图像分割分析效果2

2024-09-07 20:36
文章标签 分析 图像 分割 效果

本文主要是介绍图像分割分析效果2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这次加了结构化损失

# 训练集dice: 0.9219 - iou: 0.8611 - loss: 0.0318 - mae: 0.0220 - total: 0.8915
 # dropout后:dice: 0.9143 - iou: 0.8488 - loss: 0.0335 - mae: 0.0236 - total: 0.8816
# 加了结构化损失后:avg_score: 0.8917 - dice: 0.9228 - iou: 0.8627 - loss: 0.1098 - mae: 0.0191
# 其实效果有提升,之前自定义的指标有问题,它返回的是最后一个批次的统计信息,现在返回的是整个数据集的平均信息
model.evaluate(train_dataset)

# 验证集504个样本,dice: 0.8096 - iou: 0.7138 - loss: 0.1267 - mae: 0.0429 - total: 0.7617
 #  dice: 0.8113 - iou: 0.7135 - loss: 0.1024 - mae: 0.0409 - total: 0.7624
# 加了结构化损失后:avg_score: 0.7687 - dice: 0.8189 - iou: 0.7242 - loss: 0.2894 - mae: 0.0393
len(val_dataset)*BATCH_SIZE,验证集

经过最后的一番优化后

 模型在训练集上的表现,因为验证集和训练集不同,模型并没有训练验证集上数据

# 训练集dice: 0.9219 - iou: 0.8611 - loss: 0.0318 - mae: 0.0220 - total: 0.8915
 # dropout后:dice: 0.9143 - iou: 0.8488 - loss: 0.0335 - mae: 0.0236 - total: 0.8816
# 加了结构化损失后:avg_score: 0.8917 - dice: 0.9228 - iou: 0.8627 - loss: 0.1098 - mae: 0.0191
# 其实效果有提升,之前自定义的指标有问题,它返回的是最后一个批次的统计信息,现在返回的是整个数据集的平均信息
# 稍微修改了dropout后:avg_score: 0.9160 - dice: 0.9411 - iou: 0.8921 - loss: 0.2218 - mae: 0.0140
model.evaluate(train_dataset)

 

 

 

 

 

 

 

 

 

 

 

 

 

模型在训练集上的表现可以说相当好,再来看模型在验证集上的表现,模型从未拟合过验证集数据因为我不是用的随机拆分,也没重启内核

# 验证集504个样本,dice: 0.8096 - iou: 0.7138 - loss: 0.1267 - mae: 0.0429 - total: 0.7617
 #  dice: 0.8113 - iou: 0.7135 - loss: 0.1024 - mae: 0.0409 - total: 0.7624
# 加了结构化损失后:avg_score: 0.7687 - dice: 0.8189 - iou: 0.7242 - loss: 0.2894 - mae: 0.0393
# 稍微修改了dropout后:avg_score: 0.7939 - dice: 0.8403 - iou: 0.7524 - loss: 0.5245 - mae: 0.0322
len(val_dataset)*BATCH_SIZE

 

虽然这张图片真实掩码有半截身子的人 ,但是我还是觉得模型预测的很正确,半截身子的人不能当前景,应该只有没被裁剪的人当前景,因为这个数据集中很多裁剪的人当背景的

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

这篇关于图像分割分析效果2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146093

相关文章

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.