最大子矩阵和问题归纳总结

2024-09-07 18:32

本文主要是介绍最大子矩阵和问题归纳总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一,最大子矩阵问题:
给定一个n*n(0< n <=100)的矩阵,请找到此矩阵的一个子矩阵,并且此子矩阵的各个元素的和最大,输出这个最大的值。
Example:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
其中左上角的子矩阵:
9 2
-4 1
-1 8
此子矩阵的值为9+2+(-4)+1+(-1)+8=15。

二,分析
子矩阵是在矩阵选取部份行、列所组成的新矩阵。
我们首先想到的方法就是穷举一个矩阵的所有子矩阵,然而一个n*n的矩阵的子矩阵的个数当n比较大时时一个很大的数字 O(n^2*n^2),显然此方法不可行。怎么使得问题的复杂度降低呢?对了,相信大家应该知道了,用动态规划。对于此题,怎么使用动态规划呢?

    请先参考-->最大子段和问题这个问题与最大子段有什么联系呢?

1、首先考虑一维的最大子段和问题,给出一个序列a[0],a[1],a[2]…a[n],求出连续的一段,使其总和最大。

a[i]表示第i个元素
dp[i]表示以a[i]结尾的最大子段和

dp[i] = max{a[i], dp[i-1] + a[i]}

解释一下方程:

如果dp[i-1] > 0,则 dp[i] = dp[i-1] + a[i]
如果dp[i-1] < 0,则 dp[i] = a[i]

因为不用记录位置信息,所以dp[]可以用一个变量dp代替:

如果dp > 0,则dp += a[i]
如果dp < 0,则dp = a[i]

2、考虑二维的最大子矩阵问题

我们可以利用矩阵压缩把二维的问题转化为一维的最大子段和问题。因为是矩阵和,所以我们可以把这个矩形的高压缩成1,用加法就行了。

假设最大子矩阵的结果为从第r行到k行、从第i列到j列的子矩阵,如下所示(ari表示a[r][i],假设数组下标从1开始):

| a11 …… a1i ……a1j ……a1n |
| a21 …… a2i ……a2j ……a2n |
| . . . . . . . |
| . . . . . . . |
| ar1 …… ari ……arj ……arn |
| . . . . . . . |
| . . . . . . . |
| ak1 …… aki ……akj ……akn |
| . . . . . . . |
| an1 …… ani ……anj ……ann |

那么我们将从第r行到第k行的每一行中相同列的加起来,可以得到一个一维数组如下:
(ar1+……+ak1, ar2+……+ak2, ……,arn+……+akn)
由此我们可以看出最后所求的就是此一维数组的最大子段和问题,到此我们已经将问题转化为上面的已经解决了的问题了。

poj1050:给一个n*n(1<=n<=100)的矩阵,求最大子矩阵和

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std;
int mp[100][100];
int temp[200];
const  int mod = 1e9+7;int solve(int *a,int n)
{int dp = 0,Max = 0;for(int i = 0; i < n; i++){if(dp > 0) dp += a[i];else dp = a[i];Max = max(Max, dp);}return Max;
}int main()
{#ifdef xxzfreopen("in.txt","r",stdin);#endif // xxzint n;while(~scanf("%d",&n)){for(int i = 0; i < n; i++)for(int j = 0; j < n; j++)cin>>mp[i][j];int max_ans = 0;for(int i = 0; i < n; i++){memset(temp,0,sizeof(temp));for(int j = i;j < n; j++){for(int k = 0; k < n; k++)temp[k] += mp[j][k];int ans = solve(temp,n);max_ans = max(max_ans,ans);}}cout<<max_ans<<endl;}return 0;
}

HDU1559:给出n*m(0< n,m<=1000)的矩阵,求规格为x*y的小矩阵最大和为多少。
这题相比上题增加了限制条件,也就是上面那种的特殊情况,如用上面算法时间复杂度是O(n*n*m)则会超时,由于题目对小矩阵有了限制,我们可以用DP做,令a[i][j]为1<=s<=i,1<=t<=j所有元素的和,可以在线处理,那么就可以通过加减来求出当前子矩阵和,就好像计算几个矩阵面积一样(某部分覆盖在一起,所以相加后减去重复的面积)。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std;
int mp[1000][1000];
int temp[200];
const  int mod = 1e9+7;int solve(int *a,int n)
{int dp = 0,Max = 0;for(int i = 0; i < n; i++){if(dp > 0) dp += a[i];else dp = a[i];Max = max(Max, dp);}return Max;
}int main()
{
#ifdef xxzfreopen("in.txt","r",stdin);
#endif // xxzint T;scanf("%d",&T);while(T--){int n,m,x,y;cin>>n>>m>>x>>y;int Max = 0;for(int i = 1; i <= n; i++){for(int j = 1; j <= m; j++){cin>>mp[i][j];mp[i][j] += mp[i-1][j] + mp[i][j-1] - mp[i-1][j-1];if(i >= x && j >= y){int ans = mp[i][j] - mp[i-x][j] - mp[i][j-y] + mp[i-x][j-y];Max = max(Max,ans);}}}cout<<Max<<endl;}return 0;
}

其实这题还可以用数状数组做,二维的裸题

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;int S;int mp[1200][1200];
int lowbit(int x)
{return x & -x;
}int  getsum(int x,int y)
{int  sum  = 0;for(int i  = x; i > 0; i -= lowbit(i))for(int j = y; j > 0; j -= lowbit(j)){sum += mp[i][j];}return sum;
}void update(int x,int y,int value)
{for(int i = x; i <= 1200; i += lowbit(i))for(int j = y; j <=1200 ; j += lowbit(j)){mp[i][j] += value;}
}int main()
{#ifdef xxzfreopen("in","r",stdin);#endif // xxzint T;scanf("%d",&T);while(T--){int m,n,x,y;scanf("%d%d%d%d",&m,&n,&x,&y);memset(mp,0,sizeof(mp));for(int i = 1; i <= m; i++){for(int j = 1; j <= n; j++){int temp;scanf("%d",&temp);update(i,j,temp);}}int ans = -1;for(int i = x; i <= m; i++){for(int j = y; j <= n; j++){ans = max(ans,getsum(i,j) - getsum(i-x,j)-getsum(i,j-y) + getsum(i-x,j-y));}}printf("%d\n",ans);}return 0;
}

这篇关于最大子矩阵和问题归纳总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1145825

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

k8s容器放开锁内存限制问题

《k8s容器放开锁内存限制问题》nccl-test容器运行mpirun时因NCCL_BUFFSIZE过大导致OOM,需通过修改docker服务配置文件,将LimitMEMLOCK设为infinity并... 目录问题问题确认放开容器max locked memory限制总结参考:https://Access