最大子矩阵和问题归纳总结

2024-09-07 18:32

本文主要是介绍最大子矩阵和问题归纳总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一,最大子矩阵问题:
给定一个n*n(0< n <=100)的矩阵,请找到此矩阵的一个子矩阵,并且此子矩阵的各个元素的和最大,输出这个最大的值。
Example:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
其中左上角的子矩阵:
9 2
-4 1
-1 8
此子矩阵的值为9+2+(-4)+1+(-1)+8=15。

二,分析
子矩阵是在矩阵选取部份行、列所组成的新矩阵。
我们首先想到的方法就是穷举一个矩阵的所有子矩阵,然而一个n*n的矩阵的子矩阵的个数当n比较大时时一个很大的数字 O(n^2*n^2),显然此方法不可行。怎么使得问题的复杂度降低呢?对了,相信大家应该知道了,用动态规划。对于此题,怎么使用动态规划呢?

    请先参考-->最大子段和问题这个问题与最大子段有什么联系呢?

1、首先考虑一维的最大子段和问题,给出一个序列a[0],a[1],a[2]…a[n],求出连续的一段,使其总和最大。

a[i]表示第i个元素
dp[i]表示以a[i]结尾的最大子段和

dp[i] = max{a[i], dp[i-1] + a[i]}

解释一下方程:

如果dp[i-1] > 0,则 dp[i] = dp[i-1] + a[i]
如果dp[i-1] < 0,则 dp[i] = a[i]

因为不用记录位置信息,所以dp[]可以用一个变量dp代替:

如果dp > 0,则dp += a[i]
如果dp < 0,则dp = a[i]

2、考虑二维的最大子矩阵问题

我们可以利用矩阵压缩把二维的问题转化为一维的最大子段和问题。因为是矩阵和,所以我们可以把这个矩形的高压缩成1,用加法就行了。

假设最大子矩阵的结果为从第r行到k行、从第i列到j列的子矩阵,如下所示(ari表示a[r][i],假设数组下标从1开始):

| a11 …… a1i ……a1j ……a1n |
| a21 …… a2i ……a2j ……a2n |
| . . . . . . . |
| . . . . . . . |
| ar1 …… ari ……arj ……arn |
| . . . . . . . |
| . . . . . . . |
| ak1 …… aki ……akj ……akn |
| . . . . . . . |
| an1 …… ani ……anj ……ann |

那么我们将从第r行到第k行的每一行中相同列的加起来,可以得到一个一维数组如下:
(ar1+……+ak1, ar2+……+ak2, ……,arn+……+akn)
由此我们可以看出最后所求的就是此一维数组的最大子段和问题,到此我们已经将问题转化为上面的已经解决了的问题了。

poj1050:给一个n*n(1<=n<=100)的矩阵,求最大子矩阵和

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std;
int mp[100][100];
int temp[200];
const  int mod = 1e9+7;int solve(int *a,int n)
{int dp = 0,Max = 0;for(int i = 0; i < n; i++){if(dp > 0) dp += a[i];else dp = a[i];Max = max(Max, dp);}return Max;
}int main()
{#ifdef xxzfreopen("in.txt","r",stdin);#endif // xxzint n;while(~scanf("%d",&n)){for(int i = 0; i < n; i++)for(int j = 0; j < n; j++)cin>>mp[i][j];int max_ans = 0;for(int i = 0; i < n; i++){memset(temp,0,sizeof(temp));for(int j = i;j < n; j++){for(int k = 0; k < n; k++)temp[k] += mp[j][k];int ans = solve(temp,n);max_ans = max(max_ans,ans);}}cout<<max_ans<<endl;}return 0;
}

HDU1559:给出n*m(0< n,m<=1000)的矩阵,求规格为x*y的小矩阵最大和为多少。
这题相比上题增加了限制条件,也就是上面那种的特殊情况,如用上面算法时间复杂度是O(n*n*m)则会超时,由于题目对小矩阵有了限制,我们可以用DP做,令a[i][j]为1<=s<=i,1<=t<=j所有元素的和,可以在线处理,那么就可以通过加减来求出当前子矩阵和,就好像计算几个矩阵面积一样(某部分覆盖在一起,所以相加后减去重复的面积)。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std;
int mp[1000][1000];
int temp[200];
const  int mod = 1e9+7;int solve(int *a,int n)
{int dp = 0,Max = 0;for(int i = 0; i < n; i++){if(dp > 0) dp += a[i];else dp = a[i];Max = max(Max, dp);}return Max;
}int main()
{
#ifdef xxzfreopen("in.txt","r",stdin);
#endif // xxzint T;scanf("%d",&T);while(T--){int n,m,x,y;cin>>n>>m>>x>>y;int Max = 0;for(int i = 1; i <= n; i++){for(int j = 1; j <= m; j++){cin>>mp[i][j];mp[i][j] += mp[i-1][j] + mp[i][j-1] - mp[i-1][j-1];if(i >= x && j >= y){int ans = mp[i][j] - mp[i-x][j] - mp[i][j-y] + mp[i-x][j-y];Max = max(Max,ans);}}}cout<<Max<<endl;}return 0;
}

其实这题还可以用数状数组做,二维的裸题

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;int S;int mp[1200][1200];
int lowbit(int x)
{return x & -x;
}int  getsum(int x,int y)
{int  sum  = 0;for(int i  = x; i > 0; i -= lowbit(i))for(int j = y; j > 0; j -= lowbit(j)){sum += mp[i][j];}return sum;
}void update(int x,int y,int value)
{for(int i = x; i <= 1200; i += lowbit(i))for(int j = y; j <=1200 ; j += lowbit(j)){mp[i][j] += value;}
}int main()
{#ifdef xxzfreopen("in","r",stdin);#endif // xxzint T;scanf("%d",&T);while(T--){int m,n,x,y;scanf("%d%d%d%d",&m,&n,&x,&y);memset(mp,0,sizeof(mp));for(int i = 1; i <= m; i++){for(int j = 1; j <= n; j++){int temp;scanf("%d",&temp);update(i,j,temp);}}int ans = -1;for(int i = x; i <= m; i++){for(int j = y; j <= n; j++){ans = max(ans,getsum(i,j) - getsum(i-x,j)-getsum(i,j-y) + getsum(i-x,j-y));}}printf("%d\n",ans);}return 0;
}

这篇关于最大子矩阵和问题归纳总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1145825

相关文章

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Spring 依赖注入与循环依赖总结

《Spring依赖注入与循环依赖总结》这篇文章给大家介绍Spring依赖注入与循环依赖总结篇,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Spring 三级缓存解决循环依赖1. 创建UserService原始对象2. 将原始对象包装成工

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异