3.门锁_STM32_矩阵按键设备实现

2024-09-07 17:44

本文主要是介绍3.门锁_STM32_矩阵按键设备实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

需求来源:

门锁肯定是要输入密码,这个门锁提供了两个输入密码的方式:一个是蓝牙输入,一个是按键输入。对于按键输入,采用矩阵按键来实现。矩阵按键是为了模拟触摸屏的按键输入,后续如果项目结束前还有时间就更新为触摸屏按键输入。

矩阵按键开发整体思路:

由于矩阵按键就是GPIO的控制,所以不进行芯片和设备的分层编写,控制写在同一个文件中,最终向应用层提供一个接口。

代码层级关系: 

矩阵按键控制裸机实现

1、矩阵按键控制原理

原理及实物:

本次使用的是4*4的矩阵按键,它一共有8个引脚。其中4个引脚连接行、4个引脚连接列,我们根据读取到的按键是哪一行哪一列,就可以定位出是哪一个按键按下。在这8个引脚中,需要一组为输出,一组为输入。比如:行引脚为输出、列引脚为输入。或者反之。

实物图如下:

测试方法:

有的矩阵键盘它会给你标注哪几个引脚是行,哪几个引脚是列。但这个矩阵键盘没有,但可以知道的是要么是上面四个引脚为行,要么是下面四个引脚为行。所以我们先对这个矩阵键盘的引脚与行列关系进行测试:

  1. 首先任意一端接5v,用万用表测量按下后哪一个按键为高电平,从而可以判断接5v的引脚控制的是哪一行或者哪一列。
  2. 之后再移动一个引脚,以同样的方法测电平。这样可以得到整个矩阵按键的引脚与行列控制关系。

本次使用的矩阵键盘的引脚与行列控制关系如下:

获取按键行列信息的方法:

有了上述的对应关系,我们选择让列引脚进行输出,行引脚进行输入。检测的电平为低电平,即:GPIO输出低电平,输入端检测到低电平为按下。扫描方法如下:

  1. 首先第0列(pin3)进行拉低其余引脚拉高,然后第0~3(pin4~pin7)行进行读取电平,看是谁按下。有按下就记录下行和列的位置。
  2. 之后依次类推,总共进行4次这个操作。
  3. 根据行和列的位置,计算按键的序号。

2、配置STM32的GPIO

矩阵按键引脚与GPIO的对应关系如下:

矩阵按键引脚GPIO
PIN_0(col 0)PB0(output)
PIN_1(col 1)PB1(output)
PIN_2(col 2)PB2(output)
PIN_3(col 3)PB9(output)
PIN_4(row 0)PB5(input)
PIN_5(row 1)PB6(input)
PIN_6(row 2)PB7(input)
PIN_7(row 3)PB8(input)

使用STM32CubeMx对STM32进行GPIO的初始化配置。

注意:最终GPIO读取的有效电平为低电平,因此输入模式下应该配置上拉电阻。

3、编写STM32控制Key文件

创建两个文件matrix_key.c、matrix_key.h。这两个文件主要实现读取按键的功能,向上为应用层提供读取按键接口。

3.1 引脚宏定义

将按键的引脚与GPIO引脚以宏定义的方式进行声明,这方便后续改变矩阵按键的接线。

具体宏定义如下:

//矩阵键盘接线
#define MATRIX_KEY_PORT_0 GPIOB
#define MATRIX_KEY_PIN_0 	GPIO_PIN_0
#define MATRIX_KEY_PORT_1 GPIOB
#define MATRIX_KEY_PIN_1 	GPIO_PIN_1
#define MATRIX_KEY_PORT_2 GPIOB
#define MATRIX_KEY_PIN_2 	GPIO_PIN_2
#define MATRIX_KEY_PORT_3 GPIOB
#define MATRIX_KEY_PIN_3 	GPIO_PIN_9
#define MATRIX_KEY_PORT_4 GPIOB
#define MATRIX_KEY_PIN_4 	GPIO_PIN_5
#define MATRIX_KEY_PORT_5 GPIOB
#define MATRIX_KEY_PIN_5 	GPIO_PIN_6
#define MATRIX_KEY_PORT_6 GPIOB
#define MATRIX_KEY_PIN_6 	GPIO_PIN_7
#define MATRIX_KEY_PORT_7 GPIOB
#define MATRIX_KEY_PIN_7 	GPIO_PIN_8
3.2 Matrix_Key_SetCol()

在前面分析中,是将列依次拉低,总共需要重复4次。因此需要提供一个将指定列设置为低的函数。

具体函数实现如下:

/** Matrix_Key_SetCol:设置当前扫描的列,PIN0对应右起第一列* param i:当前扫描的列数* @ret  -1--err  0--success
*/
int Matrix_Key_SetCol(int i){//1.参数有效性判断//按键只有0~4列if(i < 0 || i > 3){printf("col err\r\n");return -1;}//2.设置相应列扫描switch(i){case 3:GPIOB->BRR |= MATRIX_KEY_PIN_0;GPIOB->BSRR |= (MATRIX_KEY_PIN_1|MATRIX_KEY_PIN_2|MATRIX_KEY_PIN_3);break;case 2:GPIOB->BRR |= MATRIX_KEY_PIN_1;GPIOB->BSRR |= (MATRIX_KEY_PIN_0|MATRIX_KEY_PIN_2|MATRIX_KEY_PIN_3);break;case 1:GPIOB->BRR |= MATRIX_KEY_PIN_2;GPIOB->BSRR |= (MATRIX_KEY_PIN_0|MATRIX_KEY_PIN_1|MATRIX_KEY_PIN_3);break;case 0:GPIOB->BRR |= MATRIX_KEY_PIN_3;GPIOB->BSRR |= (MATRIX_KEY_PIN_0|MATRIX_KEY_PIN_1|MATRIX_KEY_PIN_2);break;}return 0;
}
3.3 Matrix_Key_RowScan()

在前面分析中,读取行是依次获取的,需要提供一个行扫描的函数。

具体函数实现如下:

/** Matrix_Key_RowScan:获取指定行状态,PIN4对应上面第一行* param i:当前扫描的行数* @ret  0--没有按键按下  other--按下行的序号
*/
int Matrix_Key_RowScan(void){//依次判断每一行是否有按下if(Matrix_Key_isDown(MATRIX_KEY_PORT_4,MATRIX_KEY_PIN_4)){return 1;}if(Matrix_Key_isDown(MATRIX_KEY_PORT_5,MATRIX_KEY_PIN_5)){return 2;}if(Matrix_Key_isDown(MATRIX_KEY_PORT_6,MATRIX_KEY_PIN_6)){return 3;}if(Matrix_Key_isDown(MATRIX_KEY_PORT_7,MATRIX_KEY_PIN_7)){return 4;}return 0;
}
3.4 Matrix_Key_isDown()

与普通按键扫描一样,按键按下的判断需要进行消抖,将消抖单编写一个函数。

具体函数实现如下:

/** Matrix_Key_isDown:判断指定的按键IO是否按下* @ret  0--UP  1--DOWN
*/
int Matrix_Key_isDown(GPIO_TypeDef* KEY_Port,uint32_t KEY_Pin){if(HAL_GPIO_ReadPin(KEY_Port,KEY_Pin) == GPIO_PIN_RESET){HAL_Delay(10);if(HAL_GPIO_ReadPin(KEY_Port,KEY_Pin) == GPIO_PIN_RESET){return 1;}}return 0;
}
3.5 Matrix_Key_Scan()

有了行列扫描函数,就可以进行按键值的判断。对于应用层,我们只需要一个按下按键的序号,其他的并不关心,所以封装一个如下的接口函数。

具体函数实现如下:

/** Matrix_Key_Scan:矩阵按键接口* @ret  0--没有按下  other--按键的序号
*/
int Matrix_Key_Scan(){int col;int row;//1.扫描是哪一行哪一列产生的按键for(col=0;col<4;col++){Matrix_Key_SetCol(col);row = Matrix_Key_RowScan();if(row != 0){break;}}if(col == 4){//没扫描到按键return 0;}//2.计算是哪个按键值return ((row-1)*4+(col+1));}
3.6 最终接口函数

在测试中,发现接口函数在按键按下时会不停的输出按键序号,我们只想让他输出一次,因此对接口函数进行了又一次的封装。

具体函数实现如下:

/** Matrix_Key_GetDownNum:矩阵按键接口* @ret  0--没有按下  other--按键的序号 
*/
int Matrix_Key_GetDownNum(){int key_down_num = 0;int res = 0;static int key_up = 1;key_down_num = Matrix_Key_Scan();if(key_down_num != 0){if( key_up == 1){key_up = 0;res = key_down_num;//printf("key_down_num = %d\r\n",key_down_num);}}else{key_up = 1;}return res;
}

这篇关于3.门锁_STM32_矩阵按键设备实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1145728

相关文章

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使