Matlab)实现HSV非等间隔量化--相似判断:欧式距离--输出图片-

2024-09-07 16:58

本文主要是介绍Matlab)实现HSV非等间隔量化--相似判断:欧式距离--输出图片-,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

%**************************************************************************
                               图像检索——提取颜色特征
%HSV空间颜色直方图(将RGB空间转化为HSV空间并进行非等间隔量化,
%将三个颜色分量表示成一维矢量,再计算其直方图作为颜色特征
%function : Hist = ColorHistogram(Image)
%Image       : 输入图像数据
%Hist         : 返回颜色直方图特征向量256维
%**************************************************************************
function Hist = ColorHistogram(Image)
Image = imread('D:\matlab\work\image_0007.jpg');
[M,N,O] = size(Image);
[h,s,v] = rgb2hsv(Image);
H = h; S = s; V = v;
h = h*360;

%将hsv空间非等间隔量化:
 h量化成16级;
 s量化成4级;
 v量化成4级;
for i = 1:M
       for j = 1:N
               if h(i,j)<=15||h(i,j)>345
                       H(i,j) = 0;
               end
               if h(i,j)<=25&&h(i,j)>15
                       H(i,j) = 1;
               end
               if h(i,j)<=45&&h(i,j)>25
                       H(i,j) = 2;
               end
               if h(i,j)<=55&&h(i,j)>45
                       H(i,j) = 3;
               end
               if h(i,j)<=80&&h(i,j)>55
                       H(i,j) = 4;
               end
               if h(i,j)<=108&&h(i,j)>80
                       H(i,j) = 5;
               end
               if h(i,j)<=140&&h(i,j)>108
                       H(i,j) = 6;
               end
               if h(i,j)<=165&&h(i,j)>140
                       H(i,j) = 7;
               end
               if h(i,j)<=190&&h(i,j)>165
                       H(i,j) = 8;
               end
               if h(i,j)<=220&&h(i,j)>190
                       H(i,j) = 9;
               end
               if h(i,j)<=255&&h(i,j)>220
                       H(i,j) = 10;
               end
               if h(i,j)<=275&&h(i,j)>255
                       H(i,j) = 11;
               end
               if h(i,j)<=290&&h(i,j)>275
                       H(i,j) = 12;
               end
               if h(i,j)<=316&&h(i,j)>290
                       H(i,j) = 13;
               end
               if h(i,j)<=330&&h(i,j)>316
                       H(i,j) = 14;
               end
               if h(i,j)<=345&&h(i,j)>330
                       H(i,j) = 15;
               end
       end
end
for i = 1:M
       for j = 1:N
               if s(i,j)<=0.15&&s(i,j)>0
                       S(i,j) = 0;
               end
               if s(i,j)<=0.4&&s(i,j)>0.15
                       S(i,j) = 1;
               end
               if s(i,j)<=0.75&&s(i,j)>0.4
                       S(i,j) = 2;
               end
               if s(i,j)<=1&&s(i,j)>0.75
                       S(i,j) = 3;
               end
       end
end
for i = 1:M
       for j = 1:N
               if v(i,j)<=0.15&&v(i,j)>0
                       V(i,j) = 0;
               end
               if v(i,j)<=0.4&&v(i,j)>0.15
                       V(i,j) = 1;
               end
               if v(i,j)<=0.75&&v(i,j)>0.4
                       V(i,j) = 2;
               end
               if v(i,j)<=1&&v(i,j)>0.75
                       V(i,j) = 3;
               end
       end
end

%将三个颜色分量合成为一维特征向量:L = H*Qs*Qv+S*Qv+v;Qs,Qv分别是S和V的量化级数, L取值范围[0,255]
%取Qs = 4; Qv = 4
for   i = 1:M
       for j = 1:N
               L(i,j) = H(i,j)*16+S(i,j)*4+V(i,j);
       end
end
%计算L的直方图
for i = 0:255
       Hist(i+1) = size(find(L==i),1);
end
% Hist = Hist/sum(Hist);
T0=Hist;

% 循环读入图像
A=dir('D:\matlab\work\strawberry\*.jpg');
for k=1:size(A)
     B=strcat('\matlab\work\strawberry\',A(k).name);
     Image=imread(B);
%end
[M,N,O] = size(Image);
%M = 256;
%N = 256;

% 计算每一幅图像的颜色直方图

[h,s,v] = rgb2hsv(Image);
H = h; S = s; V = v;
h = h*360;

%将hsv空间非等间隔量化:
 h量化成16级;
 s量化成4级;
 v量化成4级;
for i = 1:M
       for j = 1:N
               if h(i,j)<=15||h(i,j)>345
                       H(i,j) = 0;
               end
               if h(i,j)<=25&&h(i,j)>15
                       H(i,j) = 1;
               end
               if h(i,j)<=45&&h(i,j)>25
                       H(i,j) = 2;
               end
               if h(i,j)<=55&&h(i,j)>45
                       H(i,j) = 3;
               end
               if h(i,j)<=80&&h(i,j)>55
                       H(i,j) = 4;
               end
               if h(i,j)<=108&&h(i,j)>80
                       H(i,j) = 5;
               end
               if h(i,j)<=140&&h(i,j)>108
                       H(i,j) = 6;
               end
               if h(i,j)<=165&&h(i,j)>140
                       H(i,j) = 7;
               end
               if h(i,j)<=190&&h(i,j)>165
                       H(i,j) = 8;
               end
               if h(i,j)<=220&&h(i,j)>190
                       H(i,j) = 9;
               end
               if h(i,j)<=255&&h(i,j)>220
                       H(i,j) = 10;
               end
               if h(i,j)<=275&&h(i,j)>255
                       H(i,j) = 11;
               end
               if h(i,j)<=290&&h(i,j)>275
                       H(i,j) = 12;
               end
               if h(i,j)<=316&&h(i,j)>290
                       H(i,j) = 13;
               end
               if h(i,j)<=330&&h(i,j)>316
                       H(i,j) = 14;
               end
               if h(i,j)<=345&&h(i,j)>330
                       H(i,j) = 15;
               end
       end
end
for i = 1:M
       for j = 1:N
               if s(i,j)<=0.15&&s(i,j)>0
                       S(i,j) = 0;
               end
               if s(i,j)<=0.4&&s(i,j)>0.15
                       S(i,j) = 1;
               end
               if s(i,j)<=0.75&&s(i,j)>0.4
                       S(i,j) = 2;
               end
               if s(i,j)<=1&&s(i,j)>0.75
                       S(i,j) = 3;
               end
       end
end
for i = 1:M
       for j = 1:N
               if v(i,j)<=0.15&&v(i,j)>0
                       V(i,j) = 0;
               end
               if v(i,j)<=0.4&&v(i,j)>0.15
                       V(i,j) = 1;
               end
               if v(i,j)<=0.75&&v(i,j)>0.4
                       V(i,j) = 2;
               end
               if v(i,j)<=1&&v(i,j)>0.75
                       V(i,j) = 3;
               end
       end
end

%将三个颜色分量合成为一维特征向量:L = H*Qs*Qv+S*Qv+v;Qs,Qv分别是S和V的量化级数, L取值范围[0,255]
%取Qs = 4; Qv = 4
for   i = 1:M
       for j = 1:N
               L(i,j) = H(i,j)*16+S(i,j)*4+V(i,j);
       end
end
%计算L的直方图
for i = 0:255
       Hist(i+1) = size(find(L==i),1);
end
% Hist = Hist/sum(Hist);
T=Hist;

% 计算图像库中每一幅图像与查询例子图像的欧式距离
diff = T0-T;
EulerDistance = sqrt( sum( diff(:).*diff(:) ) );
w(k)=EulerDistance;
end

%--------------------------------------------------------------------------
%按颜色的相似性大小显示查询结果图片
%--------------------------------------------------------------------------
[B,IX]=sort(w,2);
A=dir('D:\matlab\work\strawberry\*.jpg');
for n=1:12
         subplot(3,4,n);
         I=imread(strcat('\matlab\work\strawberry\',A(IX(n)).name));
         imshow(I);
end

这篇关于Matlab)实现HSV非等间隔量化--相似判断:欧式距离--输出图片-的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1145620

相关文章

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句

Mybatis的分页实现方式

《Mybatis的分页实现方式》MyBatis的分页实现方式主要有以下几种,每种方式适用于不同的场景,且在性能、灵活性和代码侵入性上有所差异,对Mybatis的分页实现方式感兴趣的朋友一起看看吧... 目录​1. 原生 SQL 分页(物理分页)​​2. RowBounds 分页(逻辑分页)​​3. Page

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

MYSQL查询结果实现发送给客户端

《MYSQL查询结果实现发送给客户端》:本文主要介绍MYSQL查询结果实现发送给客户端方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql取数据和发数据的流程(边读边发)Sending to clientSending DataLRU(Least Rec

Java中实现线程的创建和启动的方法

《Java中实现线程的创建和启动的方法》在Java中,实现线程的创建和启动是两个不同但紧密相关的概念,理解为什么要启动线程(调用start()方法)而非直接调用run()方法,是掌握多线程编程的关键,... 目录1. 线程的生命周期2. start() vs run() 的本质区别3. 为什么必须通过 st

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

Go语言如何判断两张图片的相似度

《Go语言如何判断两张图片的相似度》这篇文章主要为大家详细介绍了Go语言如何中实现判断两张图片的相似度的两种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 在介绍技术细节前,我们先来看看图片对比在哪些场景下可以用得到:图片去重:自动删除重复图片,为存储空间"瘦身"。想象你是一个