Deep Ocr

2024-09-07 15:52
文章标签 ocr deep

本文主要是介绍Deep Ocr,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.圈出内容,文本那里要有内容.然后你保存,并'导出数据集'.

2.找出deep_ocr_recognition_training_workflow.hdev 文件.修改“DatasetFilename := 'Test.hdict'”

310行 write_deep_ocr (DeepOcrHandle, BestModelDeepOCRFilename)

3.推理test.hdev

但发现很慢,没有mlp快,准确率也没有mlp高。

Halcon深度学习Ocr代码

这篇关于Deep Ocr的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1145495

相关文章

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

Java使用Tesseract-OCR实战教程

《Java使用Tesseract-OCR实战教程》本文介绍了如何在Java中使用Tesseract-OCR进行文本提取,包括Tesseract-OCR的安装、中文训练库的配置、依赖库的引入以及具体的代... 目录Java使用Tesseract-OCRTesseract-OCR安装配置中文训练库引入依赖代码实

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

Spring Boot集成Tess4J实现OCR

1.什么是Tess4j? Tesseract是一个开源的光学字符识别(OCR)引擎,它可以将图像中的文字转换为计算机可读的文本。支持多种语言和书面语言,并且可以在命令行中执行。它是一个流行的开源OCR工具,可以在许多不同的操作系统上运行。Tess4J是一个基于Tesseract OCR引擎的Java接口,可以用来识别图像中的文本,说白了,就是封装了它的API,让Java可以直接调用。 Tess

推荐一款强大的OCR软件,请低调使用!

今天给大家分享一款开源的OCR识别软件,可以提升大家的办公效率——Umi-OCR,支持window​和Linux系统。 Umi-OCR支持提取一张图片或者多张图片的信息,只需通过右边的功能页选择相应的功能。 点击左边的“截图OCR”进入页面 点击“截图”按钮选取截图区域,直接在右边的记录中​提取出截图中的信息。 批量OCR功能也一样,点击左边菜单的“批量OCR”菜单

使用百度飞桨PaddleOCR进行OCR识别

1、代码及文档 代码:https://github.com/PaddlePaddle/PaddleOCR?tab=readme-ov-file 介绍文档:https://paddlepaddle.github.io/PaddleOCR/ppocr/overview.html 2、依赖安装 在使用过程中需要安装库,可以依据代码运行过程中的提示安装。我使用的为python3.7,安装库为:

免费OCR 文字识别工具

免费:本项目所有代码开源,完全免费。 方便:解压即用,离线运行,无需网络。 高效:自带高效率的离线OCR引擎,内置多种语言识别库。 灵活:支持命令行、HTTP接口等外部调用方式。 功能:截图OCR / 批量OCR / PDF识别 / 二维码 / 公式识别 下载地址:https://pan.quark.cn/s/f263ecc221b7

Introduction to Deep Learning with PyTorch

1、Introduction to PyTorch, a Deep Learning Library 1.1、Importing PyTorch and related packages import torch# supports:## image data with torchvision## audio data with torchaudio## text data with t

Face Recognition简记1-A Performance Comparison of Loss Functions for Deep Face Recognition

创新点 1.各种loss的比较 总结 很久没见到这么专业的比较了,好高兴。 好像印证了一句话,没有免费的午餐。。。。 ArcFace 和 Angular Margin Softmax是性能比较突出的