树莓派使用WiringPi库配合时间函数实现超声波测距

2024-09-07 10:04

本文主要是介绍树莓派使用WiringPi库配合时间函数实现超声波测距,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

树莓派使用WiringPi库配合时间函数实现超声波测距

文章目录

  • 树莓派使用WiringPi库配合时间函数实现超声波测距
    • 一、HR-04超声波模块原理
      • 1.1 超声波测距原理:
      • 1.2 超声波时序图:
    • 二、树莓派与超声波模块硬件连接
    • 三、时间函数
      • 3.1 时间函数gettimeofday()原型和头文件:
    • 四、实现超声波测距
      • 4.1 使用wiringOP库和时间函数实现超声波测距:
    • 五、实现超声波测距并触发警报
      • 5.1 硬件接线:
      • 5.2 实现超声波测距(距离小于10cm时蜂鸣器发出警报):

一、HR-04超声波模块原理

1.1 超声波测距原理:

  • 让它发送波:给Trig端口至少10us的高电平

  • 开始发送波:Echo信号由低电平跳转到高电平

  • 接收返回波:Echo信号由高电平跳转回低电平

  • 计算时间 :Echo引脚维持高电平的时间!

  • 开始发送波,启动定时器,接收到返回波,停止计时器

  • 计算距离 :测试距离=(高电平时间*声速(340m/s))/2

1.2 超声波时序图:

在这里插入图片描述

二、树莓派与超声波模块硬件连接

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

三、时间函数

3.1 时间函数gettimeofday()原型和头文件:

#include <sys/time.h>int gettimeofday(struct timeval *tv, struct timezone *tz);int 					函数返回值,如果成功,gettimeofday 返回 0。如果失败,它返回 -1 并设置 errno 以指示错误。struct timeval *tv		这是一个指向 timeval 结构体的指针,该结构体用于存储当前时间。timeval 的定义如下:struct timeval {  time_t      tv_sec;   /* 秒 */  suseconds_t tv_usec;  /* 微秒 */  
};time_t      tv_sec		是一个整数,表示自 Unix 纪元(19701100:00:00 UTC)以来的秒数。
suseconds_t tv_usec		是一个整数,表示微秒数(0999,999)。struct timezone *tz		这是一个指向 timezone 结构体的指针,用于存储时区信息。但在现代系统中,这个参数通常被忽略,因为大多					      数系统都使用 UTC 时间,并且不再使用本地时区偏移。这个参数我们通常设置为NULL/*函数说明:
gettimeofday 是一个 Unix 和 Linux 系统调用,用于获取当前的时间(包括秒和微秒)和时区信息(尽管时区信息在大多数现代系统中可能不太常用)
*/

四、实现超声波测距

4.1 使用wiringOP库和时间函数实现超声波测距:

#include <stdio.h>
#include <wiringPi.h>
#include <sys/time.h>
#include <unistd.h>#define TRIG 2                                      //定义超声波的TRIG引脚为2
#define ECHO 3                                      //定义超声波的ECHO引脚为3void SR04_GPIO_Init()                               //初始化GPIO
{pinMode(TRIG, OUTPUT);                          //设置TRIG引脚为输出模式pinMode(ECHO, INPUT);                           //设置ECHO引脚为输入模式
}void sendTriggerPulse()                             //发送触发脉冲
{digitalWrite(TRIG, LOW);                        //拉低TRIG引脚usleep(2);                                     //延时2微秒  digitalWrite(TRIG, HIGH);                       //拉高TRIG引脚usleep(10);                                    //延时10微秒digitalWrite(TRIG, LOW);                        //拉低TRIG引脚
}double getDistance()                                //获取超声波距离
{double distance;                                //定义距离变量struct timeval Start;                           //定义开始时间变量struct timeval Stop;                            //定义结束时间变量sendTriggerPulse();                             //发送触发脉冲while(!digitalRead(ECHO));                      //等待接收到回波gettimeofday(&Start, NULL);                     //获取开始时间while(digitalRead(ECHO));                       //等待发送结束gettimeofday(&Stop, NULL);                      //获取结束时间//计算时间差(单位:微秒)long diffTime = 1000000 * (Stop.tv_sec - Start.tv_sec) + (Stop.tv_usec - Start.tv_usec); distance = (double)diffTime/1000000 * 34000 / 2;                    //计算距离(单位:厘米)return distance;                                //返回距离值
}int main()
{double dis;                                     //定义距离变量if(wiringPiSetup() == -1){                      //初始化wiringPi库printf("初始化wiringPi库失败!\n");return -1;}SR04_GPIO_Init();                               //初始化GPIOwhile(1){dis = getDistance();                        //获取超声波距离printf("当前超声波距离为:%.2f cm\n",dis);usleep(500000);                             //没500ms采集一次}return 0;
}

在这里插入图片描述

五、实现超声波测距并触发警报

5.1 硬件接线:

在这里插入图片描述

在这里插入图片描述

5.2 实现超声波测距(距离小于10cm时蜂鸣器发出警报):

#include <stdio.h>
#include <wiringPi.h>
#include <sys/time.h>
#include <unistd.h>#define TRIG 2                                      //定义超声波的TRIG引脚为2
#define ECHO 3                                      //定义超声波的ECHO引脚为3
#define BEEP 7                                      //定义蜂鸣器的引脚为7void SR04_BEEP_SGPIO_Init()                         //初始化GPIO
{pinMode(TRIG, OUTPUT);                          //设置TRIG引脚为输出模式pinMode(ECHO, INPUT);                           //设置ECHO引脚为输入模式pinMode(BEEP, OUTPUT);                          //设置BEEP引脚为输出模式
}void sendTriggerPulse()                             //发送触发脉冲
{digitalWrite(TRIG, LOW);                        //拉低TRIG引脚usleep(2);                                     //延时2微秒  digitalWrite(TRIG, HIGH);                       //拉高TRIG引脚usleep(10);                                    //延时10微秒digitalWrite(TRIG, LOW);                        //拉低TRIG引脚
}double getDistance()                                //获取超声波距离
{double distance;                                //定义距离变量struct timeval Start;                           //定义开始时间变量struct timeval Stop;                            //定义结束时间变量sendTriggerPulse();                             //发送触发脉冲while(!digitalRead(ECHO));                      //等待接收到回波gettimeofday(&Start, NULL);                     //获取开始时间while(digitalRead(ECHO));                       //等待发送结束gettimeofday(&Stop, NULL);                      //获取结束时间//计算时间差(单位:微秒)long diffTime = 1000000 * (Stop.tv_sec - Start.tv_sec) + (Stop.tv_usec - Start.tv_usec);    distance = (double)diffTime/1000000 * 34000 / 2;                    //计算距离(单位:厘米)return distance;                                //返回距离值
}int main()
{double dis;                                     //定义距离变量if(wiringPiSetup() == -1){                      //初始化wiringPi库printf("初始化wiringPi库失败!\n");return -1;}SR04_BEEP_SGPIO_Init();                         //初始化GPIOwhile(1){dis = getDistance();                        //获取超声波距离printf("当前超声波距离为:%.2f cm\n",dis);usleep(500000);                             //没500ms采集一次if(dis < 10){                               //如果距离小于10cm,则蜂鸣器发出警报printf("警报!超声波距离为:%.2f cm\n",dis);digitalWrite(BEEP, LOW); delay(200);digitalWrite(BEEP, HIGH);}else{digitalWrite(BEEP, HIGH);               //超声波距离大于10cm,则关闭蜂鸣器}}return 0;
}

在这里插入图片描述

这篇关于树莓派使用WiringPi库配合时间函数实现超声波测距的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144750

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所