【hive 函数】Hive分析函数和窗口函数

2024-09-07 06:32
文章标签 分析 函数 窗口 hive

本文主要是介绍【hive 函数】Hive分析函数和窗口函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

拿一个例子来说
数据集:

cookie1,2015-04-10 10:00:02,url2  
cookie1,2015-04-10 10:00:00,url1  
cookie1,2015-04-10 10:03:04,1url3  
cookie1,2015-04-10 10:50:05,url6  
cookie1,2015-04-10 11:00:00,url7  
cookie1,2015-04-10 10:10:00,url4  
cookie1,2015-04-10 10:50:01,url5  
cookie2,2015-04-10 10:00:02,url22  
cookie2,2015-04-10 10:00:00,url11  
cookie2,2015-04-10 10:03:04,1url33  
cookie2,2015-04-10 10:50:05,url66  
cookie2,2015-04-10 11:00:00,url77  
cookie2,2015-04-10 10:10:00,url44  
cookie2,2015-04-10 10:50:01,url55  

窗口函数

  1. FIRST_VALUE 取出分组内排序后,截止到当前行,第一个值
  2. LAST_VALUE 取出分组内排序后,截止到当前行,最后一个值
  3. LEAD(col, n,DEFAULT) 用于统计窗口内往下第n行的值。第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时,取默认值)
  4. LAG(col,n,DEFAULT) 与lead相反,用于统计窗口内往下第n个值。第一个参数为列名,第二个参数为往上第n行(可选,默认为1)

FIRST_VALUE
取分组内排序后,截止到当前行,第一个值

SELECT cookieid,  
createtime,  
url,  
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,  
FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS first1  
FROM lxw1234;  cookieid  createtime            url     rn      first1  
---------------------------------------------------------  
cookie1 2015-04-10 10:00:00     url1    1       url1  
cookie1 2015-04-10 10:00:02     url2    2       url1  
cookie1 2015-04-10 10:03:04     1url3   3       url1  
cookie1 2015-04-10 10:10:00     url4    4       url1  
cookie1 2015-04-10 10:50:01     url5    5       url1  
cookie1 2015-04-10 10:50:05     url6    6       url1  
cookie1 2015-04-10 11:00:00     url7    7       url1  
cookie2 2015-04-10 10:00:00     url11   1       url11  
cookie2 2015-04-10 10:00:02     url22   2       url11  
cookie2 2015-04-10 10:03:04     1url33  3       url11  
cookie2 2015-04-10 10:10:00     url44   4       url11  
cookie2 2015-04-10 10:50:01     url55   5       url11  
cookie2 2015-04-10 10:50:05     url66   6       url11  
cookie2 2015-04-10 11:00:00     url77   7       url11  

LAST_VALUE

取分组内排序后,截止到当前行,最后一个值

SELECT cookieid,  
createtime,  
url,  
LAST_VALUE(url) OVER(PARTITION BY cookieid) AS last2    
FROM lxw1234;  cookieid  createtime            url     last2  
----------------------------------------------  
cookie1 2015-04-10 10:00:02     url2    url5  
cookie1 2015-04-10 10:00:00     url1    url5  
cookie1 2015-04-10 10:03:04     1url3   url5  
cookie1 2015-04-10 10:50:05     url6    url5  
cookie1 2015-04-10 11:00:00     url7    url5  
cookie1 2015-04-10 10:10:00     url4    url5  
cookie1 2015-04-10 10:50:01     url5    url5  
cookie2 2015-04-10 10:00:02     url22   url55  
cookie2 2015-04-10 10:00:00     url11   url55  
cookie2 2015-04-10 10:03:04     1url33  url55  
cookie2 2015-04-10 10:50:05     url66   url55  
cookie2 2015-04-10 11:00:00     url77   url55  
cookie2 2015-04-10 10:10:00     url44   url55  
cookie2 2015-04-10 10:50:01     url55   url55  

分析函数

  1. ROW_NUMBER() 从1开始,按照顺序,生成分组内记录的序列,比如,按照pv降序排列,生成分组内每天的pv名次,ROW_NUMBER()的应用场景非常多,再比如,获取分组内排序第一的记录,获取一个session中的第一条refer等
  2. RANK() 生成数据项在分组中的排名,排名相等会在名次中留下空位
  3. DENSE_RANK() 生成数据项在分组中的排名,排名相等会在名次中不会留下空位
  4. CUME_DIST() 小于等于当前值的行数除以分组内总行数。比如,统计小于等于当前薪水的人数所占总人数的比例
  5. PERCENT_RANK() 分组内当前行的RANK值-1/分组内 总行数-1
  6. NTILE(n) 用于将分组数据按照顺序切分成n片,返回当前切片值,如果切片不均匀,默认增加第一个切片的分布。NTILE不支持ROWS BETWEEN,比如NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PERCEDING AND CURRENT ROW)

累计操作:sum

## 创建数据表
create table orders(user_id string,device_id string,user_type string,price float,sales int);## 添加数据orders.txt
zhangsa test1   new     67.1    2
lisi    test2   old     43.32   1
wanger  test3   new     88.88   3
liliu   test4   new     66.0    1
tom     test5   new     54.32   1
tomas   test6   old     77.77   2
tomson  test7   old     88.44   3
tom1    test8   new     56.55   6
tom2    test9   new     88.88   5
tom3    test10  new     66.66   5## 开窗函数案例
selectuser_id,user_type,sales,-- 默认从起点到当前所有重复行sum(sales) over(partition by user_type order by sales asc) as sales_1,-- 从起点到当前所有重复行与sales_1结果相同sum(sales) over(partition by user_type order by sales asc range between unbounded preceding and current row) as sales_2,-- 从起点到当前行,结果与sale_1结果不同sum(sales) over(partition by user_type order by sales asc rows between unbounded preceding and current row) as sales_3,-- 当前行加上往前3sum(sales) over(partition by user_type order by sales asc rows between 3 preceding and current row) as sales_4,-- 当前范围往上加3sum(sales) over(partition by user_type order by sales asc range between 3 preceding and current row) as sales_5,-- 当前行+往前3行+往后1sum(sales) over(partition by user_type order by sales asc rows between 3 preceding and 1 following) as sales_6,--sum(sales) over(partition by user_type order by sales asc range between 3 preceding and 1 following) as sales_7,-- 当前行+之后所有行sum(sales) over(partition by user_type order by sales asc rows between current row and unbounded following) as sales_8,--sum(sales) over(partition by user_type order by sales asc range between current row and unbounded following) as sales_9,-- 分组内所有行sum(sales) over(partition by user_type) as sales_10
fromorders
order byuser_type,sales,user_id;##上述查询结果如下:| user_id  | user_type  | sales  | sales_1  | sales_2  | sales_3  | sales_4  | sales_5  | sales_6  | sales_7  | sales_8  | sales_9  | sales_10  |
|----------|------------|--------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|
| liliu    | new        | 1      | 2        | 2        | 2        | 2        | 2        | 4        | 4        | 22       | 23       | 23        |
| tom      | new        | 1      | 2        | 2        | 1        | 1        | 2        | 2        | 4        | 23       | 23       | 23        |
| zhangsa  | new        | 2      | 4        | 4        | 4        | 4        | 4        | 7        | 7        | 21       | 21       | 23        |
| wanger   | new        | 3      | 7        | 7        | 7        | 7        | 7        | 12       | 7        | 19       | 19       | 23        |
| tom2     | new        | 5      | 17       | 17       | 17       | 15       | 15       | 21       | 21       | 11       | 16       | 23        |
| tom3     | new        | 5      | 17       | 17       | 12       | 11       | 15       | 16       | 21       | 16       | 16       | 23        |
| tom1     | new        | 6      | 23       | 23       | 23       | 19       | 19       | 19       | 19       | 6        | 6        | 23        |
| lisi     | old        | 1      | 1        | 1        | 1        | 1        | 1        | 3        | 3        | 6        | 6        | 6         |
| tomas    | old        | 2      | 3        | 3        | 3        | 3        | 3        | 6        | 6        | 5        | 5        | 6         |
| tomson   | old        | 3      | 6        | 6        | 6        | 6        | 6        | 6        | 6        | 3        | 3        | 6         |
注意

RANK、ROW_NUMBER、DENSE_RANK

select
user_id,user_type,sales,
RANK() over (partition by user_type order by sales desc) as r,
ROW_NUMBER() over (partition by user_type order by sales desc) as rn,
DENSE_RANK() over (partition by user_type order by sales desc) as dr
from
orders;##上述查询结果如下| user_id | user_type | sales |  r  | rn  | dr  |
| ------- | --------- | ----- | --- | --- | --- |
| tom1    | new       | 6     | 1   | 1   | 1   |
| tom3    | new       | 5     | 2   | 2   | 2   |
| tom2    | new       | 5     | 2   | 3   | 2   |
| wanger  | new       | 3     | 4   | 4   | 3   |
| zhangsa | new       | 2     | 5   | 5   | 4   |
| tom     | new       | 1     | 6   | 6   | 5   |
| liliu   | new       | 1     | 6   | 7   | 5   |
| tomson  | old       | 3     | 1   | 1   | 1   |
| tomas   | old       | 2     | 2   | 2   | 2   |
| lisi    | old       | 1     | 3   | 3   | 3   |

这篇关于【hive 函数】Hive分析函数和窗口函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144318

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Python中的sort方法、sorted函数与lambda表达式及用法详解

《Python中的sort方法、sorted函数与lambda表达式及用法详解》文章对比了Python中list.sort()与sorted()函数的区别,指出sort()原地排序返回None,sor... 目录1. sort()方法1.1 sort()方法1.2 基本语法和参数A. reverse参数B.

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe