【python pytorch】Pytorch实现逻辑回归

2024-09-07 06:18

本文主要是介绍【python pytorch】Pytorch实现逻辑回归,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

pytorch 逻辑回归学习demo:

import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable# Hyper Parameters 
input_size = 784
num_classes = 10
num_epochs = 10
batch_size = 50
learning_rate = 0.001# MNIST Dataset (Images and Labels)
train_dataset = dsets.MNIST(root='./data', train=True, transform=transforms.ToTensor(),download=True)print(train_dataset)test_dataset = dsets.MNIST(root='./data', train=False, transform=transforms.ToTensor())# Dataset Loader (Input Pipline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)# Model
class LogisticRegression(nn.Module):def __init__(self, input_size, num_classes):super(LogisticRegression, self).__init__()self.linear = nn.Linear(input_size, num_classes)def forward(self, x):out = self.linear(x)return outmodel = LogisticRegression(input_size, num_classes)# Loss and Optimizer
# Softmax is internally computed.
# Set parameters to be updated.
criterion = nn.CrossEntropyLoss()  
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)  # Training the Model
for epoch in range(num_epochs):for i, (images, labels) in enumerate(train_loader):images = Variable(images.view(-1, 28*28))labels = Variable(labels)# Forward + Backward + Optimizeoptimizer.zero_grad()outputs = model(images)loss = criterion(outputs, labels)loss.backward()optimizer.step()if (i+1) % 100 == 0:print ('Epoch: [%d/%d], Step: [%d/%d], Loss: %.4f' % (epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0]))# Test the Model
correct = 0
total = 0
for images, labels in test_loader:images = Variable(images.view(-1, 28*28))outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum()print('Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))# Save the Model
torch.save(model.state_dict(), 'model.pkl')

运行结果:

Epoch: [1/10], Step: [100/1200], Loss: 2.2397
Epoch: [1/10], Step: [200/1200], Loss: 2.1378
Epoch: [1/10], Step: [300/1200], Loss: 2.0500
Epoch: [1/10], Step: [400/1200], Loss: 1.9401
Epoch: [1/10], Step: [500/1200], Loss: 1.9175
Epoch: [1/10], Step: [600/1200], Loss: 1.8203
Epoch: [1/10], Step: [700/1200], Loss: 1.7322
Epoch: [1/10], Step: [800/1200], Loss: 1.6910
Epoch: [1/10], Step: [900/1200], Loss: 1.6678
Epoch: [1/10], Step: [1000/1200], Loss: 1.5577
Epoch: [1/10], Step: [1100/1200], Loss: 1.5113
Epoch: [1/10], Step: [1200/1200], Loss: 1.5671
Epoch: [2/10], Step: [100/1200], Loss: 1.4560
Epoch: [2/10], Step: [200/1200], Loss: 1.3170
Epoch: [2/10], Step: [300/1200], Loss: 1.3822
Epoch: [2/10], Step: [400/1200], Loss: 1.2793
Epoch: [2/10], Step: [500/1200], Loss: 1.4281
Epoch: [2/10], Step: [600/1200], Loss: 1.2763
Epoch: [2/10], Step: [700/1200], Loss: 1.1570
Epoch: [2/10], Step: [800/1200], Loss: 1.1050
Epoch: [2/10], Step: [900/1200], Loss: 1.1151
Epoch: [2/10], Step: [1000/1200], Loss: 1.0385
Epoch: [2/10], Step: [1100/1200], Loss: 1.0978
Epoch: [2/10], Step: [1200/1200], Loss: 1.0007
Epoch: [3/10], Step: [100/1200], Loss: 1.1849
Epoch: [3/10], Step: [200/1200], Loss: 1.0002
Epoch: [3/10], Step: [300/1200], Loss: 1.0198
Epoch: [3/10], Step: [400/1200], Loss: 0.9248
Epoch: [3/10], Step: [500/1200], Loss: 0.8974
Epoch: [3/10], Step: [600/1200], Loss: 1.1095
Epoch: [3/10], Step: [700/1200], Loss: 1.0900
Epoch: [3/10], Step: [800/1200], Loss: 1.0178
Epoch: [3/10], Step: [900/1200], Loss: 0.9809
Epoch: [3/10], Step: [1000/1200], Loss: 0.9831
Epoch: [3/10], Step: [1100/1200], Loss: 0.8701
Epoch: [3/10], Step: [1200/1200], Loss: 0.9855
Epoch: [4/10], Step: [100/1200], Loss: 0.9081
Epoch: [4/10], Step: [200/1200], Loss: 0.8791
Epoch: [4/10], Step: [300/1200], Loss: 0.7540
Epoch: [4/10], Step: [400/1200], Loss: 0.9443
Epoch: [4/10], Step: [500/1200], Loss: 0.9346
Epoch: [4/10], Step: [600/1200], Loss: 0.8974
Epoch: [4/10], Step: [700/1200], Loss: 0.8897
Epoch: [4/10], Step: [800/1200], Loss: 0.7797
Epoch: [4/10], Step: [900/1200], Loss: 0.8608
Epoch: [4/10], Step: [1000/1200], Loss: 0.9216
Epoch: [4/10], Step: [1100/1200], Loss: 0.8676
Epoch: [4/10], Step: [1200/1200], Loss: 0.9251
Epoch: [5/10], Step: [100/1200], Loss: 0.7640
Epoch: [5/10], Step: [200/1200], Loss: 0.6955
Epoch: [5/10], Step: [300/1200], Loss: 0.8431
Epoch: [5/10], Step: [400/1200], Loss: 0.8489
Epoch: [5/10], Step: [500/1200], Loss: 0.7191
Epoch: [5/10], Step: [600/1200], Loss: 0.6671
Epoch: [5/10], Step: [700/1200], Loss: 0.6980
Epoch: [5/10], Step: [800/1200], Loss: 0.6837
Epoch: [5/10], Step: [900/1200], Loss: 0.9087
Epoch: [5/10], Step: [1000/1200], Loss: 0.7784
Epoch: [5/10], Step: [1100/1200], Loss: 0.7890
Epoch: [5/10], Step: [1200/1200], Loss: 1.0480
Epoch: [6/10], Step: [100/1200], Loss: 0.5834
Epoch: [6/10], Step: [200/1200], Loss: 0.8300
Epoch: [6/10], Step: [300/1200], Loss: 0.8316
Epoch: [6/10], Step: [400/1200], Loss: 0.7249
Epoch: [6/10], Step: [500/1200], Loss: 0.6184
Epoch: [6/10], Step: [600/1200], Loss: 0.7505
Epoch: [6/10], Step: [700/1200], Loss: 0.6599
Epoch: [6/10], Step: [800/1200], Loss: 0.7170
Epoch: [6/10], Step: [900/1200], Loss: 0.6857
Epoch: [6/10], Step: [1000/1200], Loss: 0.6543
Epoch: [6/10], Step: [1100/1200], Loss: 0.5679
Epoch: [6/10], Step: [1200/1200], Loss: 0.8261
Epoch: [7/10], Step: [100/1200], Loss: 0.7144
Epoch: [7/10], Step: [200/1200], Loss: 0.7573
Epoch: [7/10], Step: [300/1200], Loss: 0.7254
Epoch: [7/10], Step: [400/1200], Loss: 0.5918
Epoch: [7/10], Step: [500/1200], Loss: 0.6959
Epoch: [7/10], Step: [600/1200], Loss: 0.7058
Epoch: [7/10], Step: [700/1200], Loss: 0.7382
Epoch: [7/10], Step: [800/1200], Loss: 0.7282
Epoch: [7/10], Step: [900/1200], Loss: 0.6750
Epoch: [7/10], Step: [1000/1200], Loss: 0.6019
Epoch: [7/10], Step: [1100/1200], Loss: 0.6615
Epoch: [7/10], Step: [1200/1200], Loss: 0.5851
Epoch: [8/10], Step: [100/1200], Loss: 0.6492
Epoch: [8/10], Step: [200/1200], Loss: 0.5439
Epoch: [8/10], Step: [300/1200], Loss: 0.6613
Epoch: [8/10], Step: [400/1200], Loss: 0.6486
Epoch: [8/10], Step: [500/1200], Loss: 0.8281
Epoch: [8/10], Step: [600/1200], Loss: 0.6263
Epoch: [8/10], Step: [700/1200], Loss: 0.6541
Epoch: [8/10], Step: [800/1200], Loss: 0.5080
Epoch: [8/10], Step: [900/1200], Loss: 0.7020
Epoch: [8/10], Step: [1000/1200], Loss: 0.6421
Epoch: [8/10], Step: [1100/1200], Loss: 0.6207
Epoch: [8/10], Step: [1200/1200], Loss: 0.9254
Epoch: [9/10], Step: [100/1200], Loss: 0.7428
Epoch: [9/10], Step: [200/1200], Loss: 0.6815
Epoch: [9/10], Step: [300/1200], Loss: 0.6418
Epoch: [9/10], Step: [400/1200], Loss: 0.7096
Epoch: [9/10], Step: [500/1200], Loss: 0.6846
Epoch: [9/10], Step: [600/1200], Loss: 0.5124
Epoch: [9/10], Step: [700/1200], Loss: 0.6300
Epoch: [9/10], Step: [800/1200], Loss: 0.6340
Epoch: [9/10], Step: [900/1200], Loss: 0.5593
Epoch: [9/10], Step: [1000/1200], Loss: 0.5706
Epoch: [9/10], Step: [1100/1200], Loss: 0.6258
Epoch: [9/10], Step: [1200/1200], Loss: 0.7627
Epoch: [10/10], Step: [100/1200], Loss: 0.5254
Epoch: [10/10], Step: [200/1200], Loss: 0.5318
Epoch: [10/10], Step: [300/1200], Loss: 0.5448
Epoch: [10/10], Step: [400/1200], Loss: 0.5634
Epoch: [10/10], Step: [500/1200], Loss: 0.6398
Epoch: [10/10], Step: [600/1200], Loss: 0.7158
Epoch: [10/10], Step: [700/1200], Loss: 0.6169
Epoch: [10/10], Step: [800/1200], Loss: 0.5641
Epoch: [10/10], Step: [900/1200], Loss: 0.5698
Epoch: [10/10], Step: [1000/1200], Loss: 0.5612
Epoch: [10/10], Step: [1100/1200], Loss: 0.5126
Epoch: [10/10], Step: [1200/1200], Loss: 0.6746
Accuracy of the model on the 10000 test images: 87 %Process finished with exit code 0

这篇关于【python pytorch】Pytorch实现逻辑回归的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144288

相关文章

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部