【python 走进pytotch】pytorch实现用Resnet提取特征

2024-09-07 06:08

本文主要是介绍【python 走进pytotch】pytorch实现用Resnet提取特征,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,
而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。人工智能教程

准备一张图片,pytorch可以方便地实现用预训练的网络提取特征。
下面我们用pytorch提取图片采用预训练网络resnet50,提取图片特征。

# -*- coding: utf-8 -*-import os.path
import torch
import torch.nn as nn
from torchvision import models, transforms
from torch.autograd import Variable
import numpy as np
from PIL import Image
import warnings
warnings.filterwarnings("ignore")features_dir = 'F:/img_spam/test/features/'img_path = "F:/img_spam/test/10064004487036357500320010026498.jpg"
file_name = img_path.split('/')[-1]
feature_path = os.path.join(features_dir, file_name + '.txt')print(feature_path)transform1 = transforms.Compose([transforms.Scale(256),transforms.CenterCrop(224),transforms.ToTensor()]
)img = Image.open(img_path)
img1 = transform1(img)print(img1)resnet50_feature_extractor = models.resnet50(pretrained = True)
resnet50_feature_extractor.fc = nn.Linear(2048, 2048)
torch.nn.init.eye(resnet50_feature_extractor.fc.weight)for param in resnet50_feature_extractor.parameters():param.requires_grad = Falsex = Variable(torch.unsqueeze(img1, dim=0).float(), requires_grad=False)print(x)
y = resnet50_feature_extractor(x)
y = y.data.numpy()
print(y)np.savetxt(feature_path, y, delimiter=',')
y_ = np.loadtxt(feature_path, delimiter=',').reshape(1, 2048)print(y_)

运行结果:

E:\laidefa\python.exe C:/Users/xiaohu/PycharmProjects/深度学习/pytorch实战/resNet提取图片特征.py
F:/img_spam/test/features/10064004487036357500320010026498.jpg.txt
tensor([[[ 0.9961,  0.9961,  0.9961,  ...,  0.9961,  0.9961,  0.9961],[ 0.9961,  0.9961,  0.9961,  ...,  0.9961,  0.9961,  0.9961],[ 0.9961,  0.9961,  0.9961,  ...,  0.9961,  0.9961,  0.9961],...,[ 0.9059,  0.9059,  0.8902,  ...,  0.9020,  0.9569,  0.9412],[ 0.9255,  0.9098,  0.9255,  ...,  0.8667,  0.9294,  0.9216],[ 0.9059,  0.9098,  0.9059,  ...,  0.9216,  0.9529,  0.9412]],[[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],...,[ 0.3412,  0.1137,  0.3255,  ...,  0.3608,  0.5176,  0.1569],[ 0.4667,  0.2824,  0.4314,  ...,  0.3020,  0.5216,  0.1490],[ 0.3137,  0.0667,  0.2863,  ...,  0.2510,  0.3020,  0.0784]],[[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],...,[ 0.0627,  0.0275,  0.0627,  ...,  0.0980,  0.1294,  0.0471],[ 0.1098,  0.0941,  0.1255,  ...,  0.0627,  0.1098,  0.0275],[ 0.0588,  0.0353,  0.0667,  ...,  0.0941,  0.0902,  0.0392]]])
tensor([[[[ 0.9961,  0.9961,  0.9961,  ...,  0.9961,  0.9961,  0.9961],[ 0.9961,  0.9961,  0.9961,  ...,  0.9961,  0.9961,  0.9961],[ 0.9961,  0.9961,  0.9961,  ...,  0.9961,  0.9961,  0.9961],...,[ 0.9059,  0.9059,  0.8902,  ...,  0.9020,  0.9569,  0.9412],[ 0.9255,  0.9098,  0.9255,  ...,  0.8667,  0.9294,  0.9216],[ 0.9059,  0.9098,  0.9059,  ...,  0.9216,  0.9529,  0.9412]],[[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],...,[ 0.3412,  0.1137,  0.3255,  ...,  0.3608,  0.5176,  0.1569],[ 0.4667,  0.2824,  0.4314,  ...,  0.3020,  0.5216,  0.1490],[ 0.3137,  0.0667,  0.2863,  ...,  0.2510,  0.3020,  0.0784]],[[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],...,[ 0.0627,  0.0275,  0.0627,  ...,  0.0980,  0.1294,  0.0471],[ 0.1098,  0.0941,  0.1255,  ...,  0.0627,  0.1098,  0.0275],[ 0.0588,  0.0353,  0.0667,  ...,  0.0941,  0.0902,  0.0392]]]])
[[0.36967766 0.5629435  0.49159744 ... 0.33528978 0.42739153 0.3224204 ]]
[[0.36967766 0.56294352 0.49159744 ... 0.33528978 0.42739153 0.32242039]]Process finished with exit code 0

这篇关于【python 走进pytotch】pytorch实现用Resnet提取特征的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144266

相关文章

Python如何将OpenCV摄像头视频流通过浏览器播放

《Python如何将OpenCV摄像头视频流通过浏览器播放》:本文主要介绍Python如何将OpenCV摄像头视频流通过浏览器播放的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完... 目录方法1:使用Flask + MJPEG流实现代码使用方法优点缺点方法2:使用WebSocket传输视

Python的端到端测试框架SeleniumBase使用解读

《Python的端到端测试框架SeleniumBase使用解读》:本文主要介绍Python的端到端测试框架SeleniumBase使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录SeleniumBase详细介绍及用法指南什么是 SeleniumBase?SeleniumBase

Qt 设置软件版本信息的实现

《Qt设置软件版本信息的实现》本文介绍了Qt项目中设置版本信息的三种常用方法,包括.pro文件和version.rc配置、CMakeLists.txt与version.h.in结合,具有一定的参考... 目录在运行程序期间设置版本信息可以参考VS在 QT 中设置软件版本信息的几种方法方法一:通过 .pro

Python中对FFmpeg封装开发库FFmpy详解

《Python中对FFmpeg封装开发库FFmpy详解》:本文主要介绍Python中对FFmpeg封装开发库FFmpy,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、FFmpy简介与安装1.1 FFmpy概述1.2 安装方法二、FFmpy核心类与方法2.1 FF

HTML5 中的<button>标签用法和特征

《HTML5中的<button>标签用法和特征》在HTML5中,button标签用于定义一个可点击的按钮,它是创建交互式网页的重要元素之一,本文将深入解析HTML5中的button标签,详细介绍其属... 目录引言<button> 标签的基本用法<button> 标签的属性typevaluedisabled

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

Conda虚拟环境的复制和迁移的四种方法实现

《Conda虚拟环境的复制和迁移的四种方法实现》本文主要介绍了Conda虚拟环境的复制和迁移的四种方法实现,包括requirements.txt,environment.yml,conda-pack,... 目录在本机复制Conda虚拟环境相同操作系统之间复制环境方法一:requirements.txt方法

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源