【python 走进pytotch】pytorch实现用Resnet提取特征

2024-09-07 06:08

本文主要是介绍【python 走进pytotch】pytorch实现用Resnet提取特征,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,
而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。人工智能教程

准备一张图片,pytorch可以方便地实现用预训练的网络提取特征。
下面我们用pytorch提取图片采用预训练网络resnet50,提取图片特征。

# -*- coding: utf-8 -*-import os.path
import torch
import torch.nn as nn
from torchvision import models, transforms
from torch.autograd import Variable
import numpy as np
from PIL import Image
import warnings
warnings.filterwarnings("ignore")features_dir = 'F:/img_spam/test/features/'img_path = "F:/img_spam/test/10064004487036357500320010026498.jpg"
file_name = img_path.split('/')[-1]
feature_path = os.path.join(features_dir, file_name + '.txt')print(feature_path)transform1 = transforms.Compose([transforms.Scale(256),transforms.CenterCrop(224),transforms.ToTensor()]
)img = Image.open(img_path)
img1 = transform1(img)print(img1)resnet50_feature_extractor = models.resnet50(pretrained = True)
resnet50_feature_extractor.fc = nn.Linear(2048, 2048)
torch.nn.init.eye(resnet50_feature_extractor.fc.weight)for param in resnet50_feature_extractor.parameters():param.requires_grad = Falsex = Variable(torch.unsqueeze(img1, dim=0).float(), requires_grad=False)print(x)
y = resnet50_feature_extractor(x)
y = y.data.numpy()
print(y)np.savetxt(feature_path, y, delimiter=',')
y_ = np.loadtxt(feature_path, delimiter=',').reshape(1, 2048)print(y_)

运行结果:

E:\laidefa\python.exe C:/Users/xiaohu/PycharmProjects/深度学习/pytorch实战/resNet提取图片特征.py
F:/img_spam/test/features/10064004487036357500320010026498.jpg.txt
tensor([[[ 0.9961,  0.9961,  0.9961,  ...,  0.9961,  0.9961,  0.9961],[ 0.9961,  0.9961,  0.9961,  ...,  0.9961,  0.9961,  0.9961],[ 0.9961,  0.9961,  0.9961,  ...,  0.9961,  0.9961,  0.9961],...,[ 0.9059,  0.9059,  0.8902,  ...,  0.9020,  0.9569,  0.9412],[ 0.9255,  0.9098,  0.9255,  ...,  0.8667,  0.9294,  0.9216],[ 0.9059,  0.9098,  0.9059,  ...,  0.9216,  0.9529,  0.9412]],[[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],...,[ 0.3412,  0.1137,  0.3255,  ...,  0.3608,  0.5176,  0.1569],[ 0.4667,  0.2824,  0.4314,  ...,  0.3020,  0.5216,  0.1490],[ 0.3137,  0.0667,  0.2863,  ...,  0.2510,  0.3020,  0.0784]],[[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],...,[ 0.0627,  0.0275,  0.0627,  ...,  0.0980,  0.1294,  0.0471],[ 0.1098,  0.0941,  0.1255,  ...,  0.0627,  0.1098,  0.0275],[ 0.0588,  0.0353,  0.0667,  ...,  0.0941,  0.0902,  0.0392]]])
tensor([[[[ 0.9961,  0.9961,  0.9961,  ...,  0.9961,  0.9961,  0.9961],[ 0.9961,  0.9961,  0.9961,  ...,  0.9961,  0.9961,  0.9961],[ 0.9961,  0.9961,  0.9961,  ...,  0.9961,  0.9961,  0.9961],...,[ 0.9059,  0.9059,  0.8902,  ...,  0.9020,  0.9569,  0.9412],[ 0.9255,  0.9098,  0.9255,  ...,  0.8667,  0.9294,  0.9216],[ 0.9059,  0.9098,  0.9059,  ...,  0.9216,  0.9529,  0.9412]],[[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],...,[ 0.3412,  0.1137,  0.3255,  ...,  0.3608,  0.5176,  0.1569],[ 0.4667,  0.2824,  0.4314,  ...,  0.3020,  0.5216,  0.1490],[ 0.3137,  0.0667,  0.2863,  ...,  0.2510,  0.3020,  0.0784]],[[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],[ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],...,[ 0.0627,  0.0275,  0.0627,  ...,  0.0980,  0.1294,  0.0471],[ 0.1098,  0.0941,  0.1255,  ...,  0.0627,  0.1098,  0.0275],[ 0.0588,  0.0353,  0.0667,  ...,  0.0941,  0.0902,  0.0392]]]])
[[0.36967766 0.5629435  0.49159744 ... 0.33528978 0.42739153 0.3224204 ]]
[[0.36967766 0.56294352 0.49159744 ... 0.33528978 0.42739153 0.32242039]]Process finished with exit code 0

这篇关于【python 走进pytotch】pytorch实现用Resnet提取特征的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1144266

相关文章

SpringBoot使用ffmpeg实现视频压缩

《SpringBoot使用ffmpeg实现视频压缩》FFmpeg是一个开源的跨平台多媒体处理工具集,用于录制,转换,编辑和流式传输音频和视频,本文将使用ffmpeg实现视频压缩功能,有需要的可以参考... 目录核心功能1.格式转换2.编解码3.音视频处理4.流媒体支持5.滤镜(Filter)安装配置linu

在Spring Boot中实现HTTPS加密通信及常见问题排查

《在SpringBoot中实现HTTPS加密通信及常见问题排查》HTTPS是HTTP的安全版本,通过SSL/TLS协议为通讯提供加密、身份验证和数据完整性保护,下面通过本文给大家介绍在SpringB... 目录一、HTTPS核心原理1.加密流程概述2.加密技术组合二、证书体系详解1、证书类型对比2. 证书获

Druid连接池实现自定义数据库密码加解密功能

《Druid连接池实现自定义数据库密码加解密功能》在现代应用开发中,数据安全是至关重要的,本文将介绍如何在​​Druid​​连接池中实现自定义的数据库密码加解密功能,有需要的小伙伴可以参考一下... 目录1. 环境准备2. 密码加密算法的选择3. 自定义 ​​DruidDataSource​​ 的密码解密3

使用Python实现Windows系统垃圾清理

《使用Python实现Windows系统垃圾清理》Windows自带的磁盘清理工具功能有限,无法深度清理各类垃圾文件,所以本文为大家介绍了如何使用Python+PyQt5开发一个Windows系统垃圾... 目录一、开发背景与工具概述1.1 为什么需要专业清理工具1.2 工具设计理念二、工具核心功能解析2.

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Python实现一键PDF转Word(附完整代码及详细步骤)

《Python实现一键PDF转Word(附完整代码及详细步骤)》pdf2docx是一个基于Python的第三方库,专门用于将PDF文件转换为可编辑的Word文档,下面我们就来看看如何通过pdf2doc... 目录引言:为什么需要PDF转Word一、pdf2docx介绍1. pdf2docx 是什么2. by

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使

Python程序的文件头部声明小结

《Python程序的文件头部声明小结》在Python文件的顶部声明编码通常是必须的,尤其是在处理非ASCII字符时,下面就来介绍一下两种头部文件声明,具有一定的参考价值,感兴趣的可以了解一下... 目录一、# coding=utf-8二、#!/usr/bin/env python三、运行Python程序四、

python web 开发之Flask中间件与请求处理钩子的最佳实践

《pythonweb开发之Flask中间件与请求处理钩子的最佳实践》Flask作为轻量级Web框架,提供了灵活的请求处理机制,中间件和请求钩子允许开发者在请求处理的不同阶段插入自定义逻辑,实现诸如... 目录Flask中间件与请求处理钩子完全指南1. 引言2. 请求处理生命周期概述3. 请求钩子详解3.1