2024数学建模国赛B题代码

2024-09-07 04:36
文章标签 代码 建模 2024 数学 国赛

本文主要是介绍2024数学建模国赛B题代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

B题已经完成模型代码!详情查看文末名片

问题1:可以考虑使用统计学中的“样本量估算”方法,使用二项分布或正态近似来决定最少的样本量,并通过假设检验(如单侧检验)在95%和90%置信度下进行判断。

import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt# 参数设置
p_0 = 0.10  # 标称次品率(供应商声称)
confidence_level_95 = 0.95  # 问题 (1) 的置信水平
confidence_level_90 = 0.90  # 问题 (2) 的置信水平
margin_of_error = 0.05  # 误差限# 计算Z值
Z_95 = stats.norm.ppf((1 + confidence_level_95) / 2)  # 95%置信区间
Z_90 = stats.norm.ppf((1 + confidence_level_90) / 2)  # 90%置信区间# 样本量估算公式
def sample_size(Z, p, E):"""根据Z值,次品率p,误差限E计算最少样本量"""return (Z**2 * p * (1 - p)) / (E**2)# 计算95%和90%置信度下的最少样本量
n_95 = sample_size(Z_95, p_0, margin_of_error)
n_90 = sample_size(Z_90, p_0, margin_of_error)print(f"95%置信水平下的最少样本量: {int(np.ceil(n_95))}")
print(f"90%置信水平下的最少样本量: {int(np.ceil(n_90))}")# 抽样假设检验
def hypothesis_test(p_0, n, x, confidence_level):"""根据样本量n,抽样检测到的次品数量x,以及置信水平,计算置信区间p_0: 标称次品率n: 样本量x: 次品数量confidence_level: 置信水平"""p_hat = x / n  # 样本次品率Z = stats.norm.ppf((1 + confidence_level) / 2)margin = Z * np.sqrt((p_hat * (1 - p_hat)) / n)lower_bound = p_hat - marginupper_bound = p_hat + marginreturn lower_bound, upper_bound# 模拟抽样检测
np.random.seed(42)  # 固定随机种子
n_sample = int(np.ceil(n_95))  # 使用95%置信水平下的样本量
true_defect_rate = 0.12  # 假设实际次品率为12%
sample_defects = np.random.binomial(n_sample, true_defect_rate)  # 抽样检测出的次品数量# 进行95%置信水平的假设检验
lower_95, upper_95 = hypothesis_test(p_0, n_sample, sample_defects, confidence_level_95)
# 进行90%置信水平的假设检验
lower_90, upper_90 = hypothesis_test(p_0, n_sample, sample_defects, confidence_level_90)# 打印检测结果
print(f"抽样检测得到的次品数量: {sample_defects}/{n_sample}")
print(f"95%置信区间: [{lower_95:.3f}, {upper_95:.3f}]")
print(f"90%置信区间: [{lower_90:.3f}, {upper_90:.3f}]")
完整代码:https://mbd.pub/o/bread/mbd-ZpqZl55p

问题2:基于零配件的次品率和成本数据,建立一个决策树模型或者动态规划模型,分析在每个阶段是否检测、是否拆解能使企业的总成本最小化。重点在于计算检测成本、拆解费用、调换损失等对整体利润的影响。

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import font_manager# 使用SimHei字体来支持中文显示
plt.rcParams['font.sans-serif'] = ['SimHei']  # 或者你系统支持的中文字体
plt.rcParams['axes.unicode_minus'] = False# 定义输入参数
# 情况1的数据
p1_defect_rate = 0.10  # 零配件1的次品率
p2_defect_rate = 0.10  # 零配件2的次品率
product_defect_rate = 0.10  # 成品的次品率
purchase_cost1 = 4  # 零配件1的购买单价
purchase_cost2 = 18  # 零配件2的购买单价
assembly_cost = 6  # 装配成本
market_price = 56  # 市场售价
replacement_loss = 6  # 调换损失
dismantling_cost = 5  # 拆解费用# 检测成本
detection_cost1 = 2  # 零配件1的检测成本
detection_cost2 = 3  # 零配件2的检测成本
product_detection_cost = 3  # 成品的检测成本# 决策1: 是否对零配件进行检测
def part_detection_decision(p_defect, detection_cost, purchase_cost):"""决定是否对零配件进行检测,基于检测成本和次品率如果检测成本低于购买并丢弃次品的期望损失,则选择检测"""expected_defect_loss = p_defect * purchase_cost  # 不检测时的期望损失if detection_cost < expected_defect_loss:return True  # 检测else:return False  # 不检测# 决策2: 是否对成品进行检测
def product_detection_decision(p_defect, detection_cost, market_price, replacement_loss):"""决定是否对成品进行检测,基于检测成本和退货损失如果检测成本低于次品退货的期望损失,则选择检测"""
完整代码:https://mbd.pub/o/bread/mbd-ZpqZl55p

问题3:扩展模型,考虑多道工序的情形。可以将每道工序看作一个子系统,递归地分析各个阶段的次品率对最终成品质量的影响,并提出最优的检测方案。

import numpy as np
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']  # 中文字体
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 决策函数:是否检测零配件
def part_detection_decision(p_defect, detection_cost, purchase_cost):"""根据次品率和检测成本,决定是否检测零配件。"""expected_defect_loss = p_defect * purchase_cost  # 不检测的期望次品损失detect = detection_cost < expected_defect_loss  # 如果检测成本低于次品损失,则检测decision = "检测" if detect else "不检测"return detect, decision# 决策函数:是否检测半成品/成品
def product_detection_decision(p_defect, detection_cost, replacement_loss):"""根据次品率和检测成本,决定是否检测半成品或成品。"""expected_defect_loss = p_defect * replacement_loss  # 不检测的期望次品损失detect = detection_cost < expected_defect_loss  # 如果检测成本低于次品损失,则检测decision = "检测" if detect else "不检测"return detect, decision# 工序中次品率的递进计算
def calculate_defect_rate(p_list):"""计算多个零配件组合后的次品率(使用联合概率公式)。p_list: 各零配件的次品率列表"""combined_defect_rate = 1 - np.prod([1 - p for p in p_list])  # 联合次品率return combined_defect_rate# 计算总成本,并输出决策依据
def total_cost(steps, dismantling_cost, replacement_loss):"""计算总期望成本,并输出决策依据。"""total_parts_cost = 0total_assembly_cost = 0total_product_cost = 0previous_defect_rate = 0  # 初始时为0,没有前序工序
完整代码:https://mbd.pub/o/bread/mbd-ZpqZl55p

问题4:结合问题1的抽样检测方法,重新优化问题2和问题3中的方案,确保抽样检测得到的次品率可以指导后续的决策。

import numpy as np
import scipy.stats as stats# 抽样次品率估计函数
def estimate_defect_rate(sample_size, defect_count):"""使用抽样检测方法估算次品率。sample_size: 样本量defect_count: 检测到的次品数"""return defect_count / sample_size# 决策函数:是否检测零配件
def part_detection_decision(p_defect, detection_cost, purchase_cost):"""根据估算次品率和检测成本,决定是否检测零配件。"""expected_defect_loss = p_defect * purchase_cost  # 不检测的期望次品损失detect = detection_cost < expected_defect_loss  # 如果检测成本低于次品损失,则检测decision = "检测" if detect else "不检测"return detect, decision# 决策函数:是否检测成品
def product_detection_decision(p_defect, detection_cost, replacement_loss):"""根据估算次品率和检测成本,决定是否检测成品。p_defect: 成品的次品率detection_cost: 检测成品的成本replacement_loss: 成品退货的损失"""expected_defect_loss = p_defect * replacement_loss  # 不检测的期望退货损失detect = detection_cost < expected_defect_loss  # 如果检测成本低于退货损失,则检测decision = "检测" if detect else "不检测"return detect, decision# 工序中次品率的递进计算
def calculate_defect_rate(p_list):"""计算多个零配件组合后的次品率(使用联合概率公式)。
完整代码:https://mbd.pub/o/bread/mbd-ZpqZl55p

这篇关于2024数学建模国赛B题代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144071

相关文章

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La