CUDA:用并行计算的方法对图像进行直方图均衡处理

2024-09-07 03:58

本文主要是介绍CUDA:用并行计算的方法对图像进行直方图均衡处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

(一)目的

将所学算法运用于图像处理中。

(二)内容

用并行计算的方法对图像进行直方图均衡处理。

要求:

  1. 利用直方图均衡算法处理lena_salt图像

版本1:CPU实现

版本2:GPU实现 

实验步骤一 软件设计分析:

  • 数据类型:

根据实验要求,本实验的数据类型为一个256*256*8的整型矩阵,其中元素的值为256*256个0-255的灰度值。

  • 存储方式:

图像在内存中的存储方式主要是以二维矩阵的方式进行存储,这里的lena_salt图像是一个256*256的矩阵,每一个元素用一个字节来存储像素值。

矩阵在内存中的存储按照行列优先可以分为两种方式,一种是行优先的存储方式,一种是按照列优先的方式。

这两种存储方式在访问对应的位置的数据的时候有很大的差别。在cuda内部,矩阵默认是按照列优先的方式存储,如果要使用cuda device函数,就必须考虑存储方式的问题,有的时候可能需要我们队存储方式进行装换。但是无论是用那种存储方式,最终在内存中都是顺序存储的。

三.GPU程序的blockthreads的相关设置:

       本实验提供的英伟达实验平台每一个Grid可以按照一维或者二维的方式组织,每一个Block可以按照一维,二维或者三维的方式进行组织。每一个block最多只能有1536个线程。内核函数使用的线程总量也受到设备本身的限制。

对于本次实验,针对上文中提到的几个任务,block和threads的组织方式都可以描述为:

dim3 threadsPerBlock(16, 16);

  dim3 blocksPerGrid((img_in.w + 15) / 16, (img_in.h + 15) / 16);

实验步骤二 实验设备:

本地设备:PC机+Windows10操作系统

  Putty远程连接工具

  PsFTP远程文件传输工具

远程设备:NVIDIA-SMI 352.79

  Driver Version:352.79

 

实验步骤三 CPU计算代码:

void cpu_ histogram_equalization_kernel(uchar * img_in, uchar * img_out, int img_w, int img_h){

    //数据定义

    float pixel_value[256];

    float P_pixel_value[256];

    float Sum_P_pixel_value[256];

    for (int i = 0; i < 256; i++)

        pixel_value[i] = 0;

    //统计直方图

    for (int i = 0; i<img_h; i++)

    {

        for (int j = 0; j<img_w; j++)

        {

            pixel_value[img_in[i * img_w + j]]++;

            //img_out[i*img_w+j] = pixel_out;

        }

    }

    //概率直方图

    for (int i = 0; i < 256; i++)

        P_pixel_value[i] = pixel_value[i] / 256 / 256;

    //前项概率求和

    for (int i = 0; i < 256; i++)

    {

        float sum = 0.0;

        for (int j = 0; j < i; j++)

            sum += P_pixel_value[j];

        Sum_P_pixel_value[i] = sum;

    }

    //均衡化

    for (int i = 0; i<img_h; i++)

    {

        for (int j = 0; j<img_w; j++)

        {

            int pixel_out = int(Sum_P_pixel_value[img_in[i * img_w + j]] * 256 + 0.5);

            img_out[i*img_w + j] = pixel_out;

        }

    }

}

实验步骤四 GPU计算代码:

  1. 新增数据定义及初始化部分

float *pixel_value_h = new float[256];

    float *P_pixel_value_h = new float[256];

    float *Sum_P_pixel_value_h = new float[256];

    for (int i = 0; i < 256; i++)

    {

        pixel_value_h[i] = 0.0;

        P_pixel_value_h[i] = 0.0;

        Sum_P_pixel_value_h[i] = 0.0;

    }

    float *pixel_value_d;

    float *P_pixel_value_d;

    float *Sum_P_pixel_value_d;

    cudaMalloc((void **)&pixel_value_d, 256 * sizeof(double));

    cudaMalloc((void **)&P_pixel_value_d, 256 * sizeof(float));

    cudaMalloc((void **)&Sum_P_pixel_value_d, 256 * sizeof(float));

    cudaMemcpy(pixel_value_d, pixel_value_h, 256 * sizeof(float), cudaMemcpyHostToDevice);

    cudaMemcpy(P_pixel_value_d, P_pixel_value_h, 256 * sizeof(float), cudaMemcpyHostToDevice);

    cudaMemcpy(Sum_P_pixel_value_d, Sum_P_pixel_value_h, 256 * sizeof(float), cudaMemcpyHostToDevice);

  1. 函数定义部分

//统计直方图

__global__ void gpu_histogram_sta_kernel(uchar * img_in, uchar * img_out, int img_w, int img_h, float *pixel_value)

{

    int row = blockDim.y * blockIdx.y + threadIdx.y;

    int col = blockDim.x * blockIdx.x + threadIdx.x;

    if ((row >= 0) && (row < img_h) && (col >= 0) && (col < img_w))

        //pixel_value[img_in[row*img_w + col]]++;

        atomicAdd(&pixel_value[img_in[row*img_w + col]], 1.0);

}

//计算概率

__global__ void gpu_probability_sta_kernel(uchar * img_in, uchar * img_out, int img_w, int img_h, float *pixel_value, float *P_pixel_value)

{

    if ((blockIdx.x == 0) && (blockIdx.y == 0) && (threadIdx.x == 0) && (threadIdx.y == 0))

        for (int i = 0; i < 256;i++)

            P_pixel_value[i] = pixel_value[i] / 256 /256;

}

//计算概率前项和

__global__ void gpu_sum_probability_kernel(uchar * img_in, uchar * img_out, int img_w, int img_h, float *P_pixel_value, float *Sum_P_pixel_value)

{

    __shared__ float sharedM[256];

 

    int i = threadIdx.x + blockIdx.x * blockDim.x;

    unsigned int bid = blockIdx.y * gridDim.x + blockIdx.x;

    unsigned int bid = blockIdx.x;

    unsigned int tid = threadIdx.x;

    unsigned int count = 1;

    sharedM[tid] = P_pixel_value[tid];

    __syncthreads();

    if (bid % 2 == 0)

    {

        for (unsigned int stride = 1; stride < bid; stride *= 2)

        {

            __syncthreads();

            if (tid % (2*stride) == 0)

                sharedM[tid] += sharedM[tid + stride];

        }

    }  

    else

    {

        for (unsigned int stride = 1; stride < bid + 1; stride *= 2)

        {

            __syncthreads();

            if (tid % (2 * stride) == 0)

                sharedM[tid] += sharedM[tid + stride];

        }

    }

    if (tid == 0)

        Sum_P_pixel_value[blockIdx.x] = sharedM[0];

}

//均衡化

__global__ void gpu_equilibrium_kernel(uchar * img_in, uchar * img_out, int img_w, int img_h, float *Sum_P_pixel_value)

{

    int row = blockDim.y * blockIdx.y + threadIdx.y;

    int col = blockDim.x * blockIdx.x + threadIdx.x;

    img_out[row*img_w + col] = int(Sum_P_pixel_value[img_in[row*img_w + col]] * 256 + 0.5);

}

  1. 函数调用

 

gpu_histogram_sta_kernel << <blocksPerGrid, threadsPerBlock >> >(d_img_in, d_img_out, img_in.w, img_in.h, pixel_value_d);

    gpu_probability_sta_kernel << <blocksPerGrid, threadsPerBlock >> >(d_img_in, d_img_out, img_in.w, img_in.h, pixel_value_d, P_pixel_value_d);

    gpu_sum_probability_kernel << <256, 256 >> >(d_img_in, d_img_out, img_in.w, img_in.h, P_pixel_value_d, Sum_P_pixel_value_d);

    gpu_equilibrium_kernel << <blocksPerGrid, threadsPerBlock >> >(d_img_in, d_img_out, img_in.w, img_in.h, Sum_P_pixel_value_d);

 

实验步骤五 观察输出结果:

图1 原图像

 

  1. 版本1:CPU实现处理结果

 

图2 CPU实现处理效果

 

 

图3 CPU实现处理时间

 

2,版本2:GPU实现处理结果

图4 CPU实现处理效果

 

图5 CPU实现处理时间

3,处理过程中的数据

图6 直方图统计结果

图7 概率计算结果

 

图8 概率前项求和

 

 

实验结论:

 

cpu程序计算所需时间:

   版本1,CPU实现程序计算所需时间:1.6711328ms

gpu程序计算所需时间:

   版本2,GPU实现程序计算所需时间:2.950976ms

 

总结

之前的实验都是讲所有的代码写在一个kernel函数里面,本次实验突发奇想的采用多个kernel函数对直方图均衡的每一步分别进行处理,也算是一种新的尝试吧。在实验的过程中,由于远程端的运行环境导致调试代码,特别是排查错误显得很艰难。我在这里才取的解决办法就是将处理完的数据传回host端,然后打印出来,观察输出结果是否符合预期。这样就很容易发现处理的过程中是哪一步出了问题,方便了错误排查。

这篇关于CUDA:用并行计算的方法对图像进行直方图均衡处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143994

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则