CUDA:用并行计算的方法对图像进行直方图均衡处理

2024-09-07 03:58

本文主要是介绍CUDA:用并行计算的方法对图像进行直方图均衡处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

(一)目的

将所学算法运用于图像处理中。

(二)内容

用并行计算的方法对图像进行直方图均衡处理。

要求:

  1. 利用直方图均衡算法处理lena_salt图像

版本1:CPU实现

版本2:GPU实现 

实验步骤一 软件设计分析:

  • 数据类型:

根据实验要求,本实验的数据类型为一个256*256*8的整型矩阵,其中元素的值为256*256个0-255的灰度值。

  • 存储方式:

图像在内存中的存储方式主要是以二维矩阵的方式进行存储,这里的lena_salt图像是一个256*256的矩阵,每一个元素用一个字节来存储像素值。

矩阵在内存中的存储按照行列优先可以分为两种方式,一种是行优先的存储方式,一种是按照列优先的方式。

这两种存储方式在访问对应的位置的数据的时候有很大的差别。在cuda内部,矩阵默认是按照列优先的方式存储,如果要使用cuda device函数,就必须考虑存储方式的问题,有的时候可能需要我们队存储方式进行装换。但是无论是用那种存储方式,最终在内存中都是顺序存储的。

三.GPU程序的blockthreads的相关设置:

       本实验提供的英伟达实验平台每一个Grid可以按照一维或者二维的方式组织,每一个Block可以按照一维,二维或者三维的方式进行组织。每一个block最多只能有1536个线程。内核函数使用的线程总量也受到设备本身的限制。

对于本次实验,针对上文中提到的几个任务,block和threads的组织方式都可以描述为:

dim3 threadsPerBlock(16, 16);

  dim3 blocksPerGrid((img_in.w + 15) / 16, (img_in.h + 15) / 16);

实验步骤二 实验设备:

本地设备:PC机+Windows10操作系统

  Putty远程连接工具

  PsFTP远程文件传输工具

远程设备:NVIDIA-SMI 352.79

  Driver Version:352.79

 

实验步骤三 CPU计算代码:

void cpu_ histogram_equalization_kernel(uchar * img_in, uchar * img_out, int img_w, int img_h){

    //数据定义

    float pixel_value[256];

    float P_pixel_value[256];

    float Sum_P_pixel_value[256];

    for (int i = 0; i < 256; i++)

        pixel_value[i] = 0;

    //统计直方图

    for (int i = 0; i<img_h; i++)

    {

        for (int j = 0; j<img_w; j++)

        {

            pixel_value[img_in[i * img_w + j]]++;

            //img_out[i*img_w+j] = pixel_out;

        }

    }

    //概率直方图

    for (int i = 0; i < 256; i++)

        P_pixel_value[i] = pixel_value[i] / 256 / 256;

    //前项概率求和

    for (int i = 0; i < 256; i++)

    {

        float sum = 0.0;

        for (int j = 0; j < i; j++)

            sum += P_pixel_value[j];

        Sum_P_pixel_value[i] = sum;

    }

    //均衡化

    for (int i = 0; i<img_h; i++)

    {

        for (int j = 0; j<img_w; j++)

        {

            int pixel_out = int(Sum_P_pixel_value[img_in[i * img_w + j]] * 256 + 0.5);

            img_out[i*img_w + j] = pixel_out;

        }

    }

}

实验步骤四 GPU计算代码:

  1. 新增数据定义及初始化部分

float *pixel_value_h = new float[256];

    float *P_pixel_value_h = new float[256];

    float *Sum_P_pixel_value_h = new float[256];

    for (int i = 0; i < 256; i++)

    {

        pixel_value_h[i] = 0.0;

        P_pixel_value_h[i] = 0.0;

        Sum_P_pixel_value_h[i] = 0.0;

    }

    float *pixel_value_d;

    float *P_pixel_value_d;

    float *Sum_P_pixel_value_d;

    cudaMalloc((void **)&pixel_value_d, 256 * sizeof(double));

    cudaMalloc((void **)&P_pixel_value_d, 256 * sizeof(float));

    cudaMalloc((void **)&Sum_P_pixel_value_d, 256 * sizeof(float));

    cudaMemcpy(pixel_value_d, pixel_value_h, 256 * sizeof(float), cudaMemcpyHostToDevice);

    cudaMemcpy(P_pixel_value_d, P_pixel_value_h, 256 * sizeof(float), cudaMemcpyHostToDevice);

    cudaMemcpy(Sum_P_pixel_value_d, Sum_P_pixel_value_h, 256 * sizeof(float), cudaMemcpyHostToDevice);

  1. 函数定义部分

//统计直方图

__global__ void gpu_histogram_sta_kernel(uchar * img_in, uchar * img_out, int img_w, int img_h, float *pixel_value)

{

    int row = blockDim.y * blockIdx.y + threadIdx.y;

    int col = blockDim.x * blockIdx.x + threadIdx.x;

    if ((row >= 0) && (row < img_h) && (col >= 0) && (col < img_w))

        //pixel_value[img_in[row*img_w + col]]++;

        atomicAdd(&pixel_value[img_in[row*img_w + col]], 1.0);

}

//计算概率

__global__ void gpu_probability_sta_kernel(uchar * img_in, uchar * img_out, int img_w, int img_h, float *pixel_value, float *P_pixel_value)

{

    if ((blockIdx.x == 0) && (blockIdx.y == 0) && (threadIdx.x == 0) && (threadIdx.y == 0))

        for (int i = 0; i < 256;i++)

            P_pixel_value[i] = pixel_value[i] / 256 /256;

}

//计算概率前项和

__global__ void gpu_sum_probability_kernel(uchar * img_in, uchar * img_out, int img_w, int img_h, float *P_pixel_value, float *Sum_P_pixel_value)

{

    __shared__ float sharedM[256];

 

    int i = threadIdx.x + blockIdx.x * blockDim.x;

    unsigned int bid = blockIdx.y * gridDim.x + blockIdx.x;

    unsigned int bid = blockIdx.x;

    unsigned int tid = threadIdx.x;

    unsigned int count = 1;

    sharedM[tid] = P_pixel_value[tid];

    __syncthreads();

    if (bid % 2 == 0)

    {

        for (unsigned int stride = 1; stride < bid; stride *= 2)

        {

            __syncthreads();

            if (tid % (2*stride) == 0)

                sharedM[tid] += sharedM[tid + stride];

        }

    }  

    else

    {

        for (unsigned int stride = 1; stride < bid + 1; stride *= 2)

        {

            __syncthreads();

            if (tid % (2 * stride) == 0)

                sharedM[tid] += sharedM[tid + stride];

        }

    }

    if (tid == 0)

        Sum_P_pixel_value[blockIdx.x] = sharedM[0];

}

//均衡化

__global__ void gpu_equilibrium_kernel(uchar * img_in, uchar * img_out, int img_w, int img_h, float *Sum_P_pixel_value)

{

    int row = blockDim.y * blockIdx.y + threadIdx.y;

    int col = blockDim.x * blockIdx.x + threadIdx.x;

    img_out[row*img_w + col] = int(Sum_P_pixel_value[img_in[row*img_w + col]] * 256 + 0.5);

}

  1. 函数调用

 

gpu_histogram_sta_kernel << <blocksPerGrid, threadsPerBlock >> >(d_img_in, d_img_out, img_in.w, img_in.h, pixel_value_d);

    gpu_probability_sta_kernel << <blocksPerGrid, threadsPerBlock >> >(d_img_in, d_img_out, img_in.w, img_in.h, pixel_value_d, P_pixel_value_d);

    gpu_sum_probability_kernel << <256, 256 >> >(d_img_in, d_img_out, img_in.w, img_in.h, P_pixel_value_d, Sum_P_pixel_value_d);

    gpu_equilibrium_kernel << <blocksPerGrid, threadsPerBlock >> >(d_img_in, d_img_out, img_in.w, img_in.h, Sum_P_pixel_value_d);

 

实验步骤五 观察输出结果:

图1 原图像

 

  1. 版本1:CPU实现处理结果

 

图2 CPU实现处理效果

 

 

图3 CPU实现处理时间

 

2,版本2:GPU实现处理结果

图4 CPU实现处理效果

 

图5 CPU实现处理时间

3,处理过程中的数据

图6 直方图统计结果

图7 概率计算结果

 

图8 概率前项求和

 

 

实验结论:

 

cpu程序计算所需时间:

   版本1,CPU实现程序计算所需时间:1.6711328ms

gpu程序计算所需时间:

   版本2,GPU实现程序计算所需时间:2.950976ms

 

总结

之前的实验都是讲所有的代码写在一个kernel函数里面,本次实验突发奇想的采用多个kernel函数对直方图均衡的每一步分别进行处理,也算是一种新的尝试吧。在实验的过程中,由于远程端的运行环境导致调试代码,特别是排查错误显得很艰难。我在这里才取的解决办法就是将处理完的数据传回host端,然后打印出来,观察输出结果是否符合预期。这样就很容易发现处理的过程中是哪一步出了问题,方便了错误排查。

这篇关于CUDA:用并行计算的方法对图像进行直方图均衡处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143994

相关文章

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at