鸿蒙轻内核M核源码分析系列十二 事件Event

2024-09-07 01:44

本文主要是介绍鸿蒙轻内核M核源码分析系列十二 事件Event,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

往期知识点记录:

  • 鸿蒙(HarmonyOS)应用层开发(北向)知识点汇总
  • 轻内核M核源码分析系列一 数据结构-双向循环链表
  • 轻内核M核源码分析系列二 数据结构-任务就绪队列
  • 鸿蒙轻内核M核源码分析系列三 数据结构-任务排序链表
  • 轻内核M核源码分析系列四 中断Hwi
  • 轻内核M核源码分析系列五 时间管理
  • 轻内核M核源码分析系列六 任务及任务调度(1)任务栈
  • 轻内核M核源码分析系列六 任务及任务调度(2)任务模块
  • 轻内核M核源码分析系列六 任务及任务调度(3)任务调度模块
  • 轻内核M核源码分析系列七 动态内存Dynamic Memory
  • 轻内核M核源码分析系列八 静态内存MemoryBox
  • 轻内核M核源码分析系列九 互斥锁Mutex
  • 轻内核M核源码分析系列十 软件定时器Swtmr
  • 轻内核M核源码分析系列十一 (1)信号量Semaphore
  • 轻内核M核源码分析系列十一 (2)信号量Semaphore
  • 轻内核M核源码分析系列十二 事件Event
  • 轻内核M核源码分析系列十三 消息队列Queue
  • 轻内核M核源码分析系列十四 软件定时器Swtmr
  • 轻内核M核源码分析系列十五 CPU使用率CPUP
  • 轻内核M核源码分析系列十六 MPU内存保护单元
  • 轻内核M核源码分析系列十七(1) 异常钩子函数类型介绍
  • 轻内核M核源码分析系列十七(2) 异常钩子函数的注册操作
  • 轻内核M核源码分析系列十七(3) 异常信息ExcInfo
  • 轻内核M核源码分析系列十八 Fault异常处理
  • 轻内核M核源码分析系列十九 Musl LibC
  • 轻内核M核源码分析系列二十 Newlib C
  • 持续更新中……

事件(Event)是一种任务间通信的机制,可用于任务间的同步。多任务环境下,任务之间往往需要同步操作,一个等待即是一个同步。事件可以提供一对多、多对多的同步操作。本文通过分析鸿蒙轻内核事件模块的源码,深入掌握事件的使用。本文中所涉及的源码,以OpenHarmony LiteOS-M内核为例,均可以在开源站点https://gitee.com/openharmony/kernel_liteos_m 获取。


接下来,我们看下事件的结构体,事件初始化,事件常用操作的源代码。

1、事件结构体定义和常用宏定义

1.1 事件结构体定义

在文件kernel\include\los_event.h定义的事件控制块结构体为EVENT_CB_S,结构体源代码如下,结构体成员的解释见注释部分。

typedef struct tagEvent {UINT32 uwEventID;        /**< 事件ID,每一位标识一种事件类型 */LOS_DL_LIST stEventList; /**< 读取事件的任务链表 */
} EVENT_CB_S, *PEVENT_CB_S;

1.2 事件常用宏定义

在读事件时,可以选择读取模式。读取模式由如下几个宏定义:

  • 所有事件(LOS_WAITMODE_AND):

    逻辑与,基于接口传入的事件类型掩码eventMask,只有这些事件都已经发生才能读取成功,否则该任务将阻塞等待或者返回错误码。

  • 任一事件(LOS_WAITMODE_OR):

    逻辑或,基于接口传入的事件类型掩码eventMask,只要这些事件中有任一种事件发生就可以读取成功,否则该任务将阻塞等待或者返回错误码。

  • 清除事件(LOS_WAITMODE_CLR):

    这是一种附加读取模式,需要与所有事件模式或任一事件模式结合使用(LOS_WAITMODE_AND | LOS_WAITMODE_CLRLOS_WAITMODE_OR | LOS_WAITMODE_CLR)。在这种模式下,当设置的所有事件模式或任一事件模式读取成功后,会自动清除事件控制块中对应的事件类型位。

   #define LOS_WAITMODE_AND                   (4)#define LOS_WAITMODE_OR                    (2)#define LOS_WAITMODE_CLR                   (1)

3、事件常用操作

3.1 初始化事件

在使用事件前,必须使用函数UINT32 LOS_EventInit(PEVENT_CB_S eventCB)来初始化事件,需要的参数是结构体指针变量PEVENT_CB_S eventCB。分析下代码,⑴处表示传入的参数不能为空,否则返回错误码。⑵处把事件编码.uwEventID初始化为0,然后初始化双向循环链表.stEventList,用于挂载读取事件的任务。

LITE_OS_SEC_TEXT_INIT UINT32 LOS_EventInit(PEVENT_CB_S eventCB)
{
⑴  if (eventCB == NULL) {return LOS_ERRNO_EVENT_PTR_NULL;}
⑵  eventCB->uwEventID = 0;LOS_ListInit(&eventCB->stEventList);OsHookCall(LOS_HOOK_TYPE_EVENT_INIT);return LOS_OK;
}

3.2 校验事件掩码

我们可以使用函数UINT32 LOS_EventPoll(UINT32 *eventId, UINT32 eventMask, UINT32 mode)来校验事件掩码,需要的参数为事件结构体的事件编码eventId、用户传入的待校验的事件掩码eventMask及读取模式mode,返回用户传入的事件是否发生: 返回值为0时,表示用户预期的事件没有发生,否则表示用户期望的事件发生。

我们看下源码,⑴处先检查传入参数的合法性,事件编码不能为空。然后执行⑵处的代码进行校验。如果是任一事件读取模式,接下来的判断不等于表示至少有一个事件发生了,返回值ret就表示哪些事件发生了。⑶如果是所有事情读取模式,当逻辑与运算*eventId & eventMask还等于eventMask时,表示期望的事件全部发生了,返回值ret就表示哪些事件发生了。⑷处当ret不为0,期望的事件发生,并且是清除事件读取模式时,需要把已经发生的事情进行清除。看来,这个函数不仅仅是查询事件有没有发生,还会有更新事件编码的动作。

LITE_OS_SEC_TEXT UINT32 LOS_EventPoll(UINT32 *eventID, UINT32 eventMask, UINT32 mode)
{UINT32 ret = 0;UINT32 intSave;⑴  if (eventID == NULL) {return LOS_ERRNO_EVENT_PTR_NULL;}intSave = LOS_IntLock();
⑵  if (mode & LOS_WAITMODE_OR) {if ((*eventID & eventMask) != 0) {ret = *eventID & eventMask;}} else {
⑶      if ((eventMask != 0) && (eventMask == (*eventID & eventMask))) {ret = *eventID & eventMask;}}
⑷  if (ret && (mode & LOS_WAITMODE_CLR)) {*eventID = *eventID & ~(ret);}LOS_IntRestore(intSave);return ret;
}

3.3 读/写事件

3.3.1 读取指定事件类型

我们可以使用函数LOS_EventRead()来读取事件,需要4个参数。eventCB是初始化好的事件结构体,eventMask表示需要读取的事件掩码,mode是上文说明过的读取模式,timeout是读取超时,单位是Tick。函数返回0时,表示期望的事件没有发生,读取事件失败,进入阻塞。返回非0时表示期望的事件发生了,成功读取事件。下面我们分析下函数的源码来看看如何读取事件的。

⑴处调用函数OsEventReadParamCheck()进行基础的校验,比如第25位保留不能使用,事件掩码eventMask不能为零,读取模式组合是否合法。⑵处表示不能中断中读取事件。⑶处调用校验函数OsEventPoll()检查事件eventMask是否发生。如果事件发生ret不为0,成功读取直接返回。ret为0,事件没有发生时,执行⑷,如果超时时间timeout为0,调用者不能等待时,直接返回。⑸如果锁任务调度时,不能读取事件,返回错误码。

⑹更新当前任务的阻塞的事件掩码.eventMask和事件读取模式.eventMode。执行⑺调用函数OsSchedTaskWait更改当前任务的状态为阻塞状态,挂载到事件的任务阻塞链表上。如果timeout不是永久等待,还会把任务设置为OS_TASK_STATUS_PEND_TIME状态并设置等待时间。⑻处触发任务调度,后续程序需要等到读取到事件才会继续执行。

⑼如果等待时间超时,事件还不可读,本任务读取不到指定的事件时,返回错误码。如果可以读取到指定的事件时,执行⑽,检查事件eventMask是否发生,然后返回结果值。

LITE_OS_SEC_TEXT UINT32 LOS_EventRead(PEVENT_CB_S eventCB, UINT32 eventMask, UINT32 mode, UINT32 timeOut)
{UINT32 ret;UINT32 intSave;LosTaskCB *runTsk = NULL;⑴  ret = OsEventReadParamCheck(eventCB, eventMask, mode);if (ret != LOS_OK) {return ret;}⑵  if (OS_INT_ACTIVE) {return LOS_ERRNO_EVENT_READ_IN_INTERRUPT;}intSave = LOS_IntLock();
⑶  ret = LOS_EventPoll(&(eventCB->uwEventID), eventMask, mode);OsHookCall(LOS_HOOK_TYPE_EVENT_READ, eventCB, eventMask, mode);if (ret == 0) {
⑷      if (timeOut == 0) {LOS_IntRestore(intSave);return ret;}⑸      if (g_losTaskLock) {LOS_IntRestore(intSave);return LOS_ERRNO_EVENT_READ_IN_LOCK;}runTsk = g_losTask.runTask;
⑹      runTsk->eventMask = eventMask;runTsk->eventMode = mode;
⑺      OsSchedTaskWait(&eventCB->stEventList, timeOut);LOS_IntRestore(intSave);
⑻      LOS_Schedule();⑼      intSave = LOS_IntLock();if (runTsk->taskStatus & OS_TASK_STATUS_TIMEOUT) {runTsk->taskStatus &= ~OS_TASK_STATUS_TIMEOUT;LOS_IntRestore(intSave);return LOS_ERRNO_EVENT_READ_TIMEOUT;}⑽      ret = LOS_EventPoll(&eventCB->uwEventID, eventMask, mode);}LOS_IntRestore(intSave);return ret;
}
3.3.2 写入指定的事件类型

我们可以使用函数UINT32 LOS_EventWrite(PEVENT_CB_S eventCB, UINT32 events)来写入指定的事件类型。代码如下所示:

下面通过分析源码来看看如何写入事件类型的。⑴处代码把事件结构体的事件掩码和要写入的事件类型events进行逻辑或计算,来完成事件的写入。⑵如果等待事件的任务链表不为空,需要处理写入事件后是否有任务能读取到相应的事件。⑶处for循环依次遍历事件阻塞链表上的任务,⑷获取下一个任务nextTask。⑸处
分不同的读取模式判断事件是否符合任务resumedTask读取事件的要求,如果满足读取事件,执行⑹设置退出标记exitFlag,然后调用函数OsSchedTaskWake()把读取事件的任务更改状态并放入就绪队列,继续执行⑺,遍历事件的阻塞任务链表中的每一个任务。⑻如果有任务读取到事件,需要触发任务调度。

LITE_OS_SEC_TEXT UINT32 LOS_EventWrite(PEVENT_CB_S eventCB, UINT32 events)
{LosTaskCB *resumedTask = NULL;LosTaskCB *nextTask = (LosTaskCB *)NULL;UINT32 intSave;UINT8 exitFlag = 0;if (eventCB == NULL) {return LOS_ERRNO_EVENT_PTR_NULL;}if ((eventCB->stEventList.pstNext == NULL) || (eventCB->stEventList.pstPrev == NULL)) {return LOS_ERRNO_EVENT_NOT_INITIALIZED;}if (events & LOS_ERRTYPE_ERROR) {return LOS_ERRNO_EVENT_SETBIT_INVALID;}intSave = LOS_IntLock();
⑴  eventCB->uwEventID |= events;OsHookCall(LOS_HOOK_TYPE_EVENT_WRITE, eventCB);
⑵  if (!LOS_ListEmpty(&eventCB->stEventList)) {
⑶      for (resumedTask = LOS_DL_LIST_ENTRY((&eventCB->stEventList)->pstNext, LosTaskCB, pendList);&resumedTask->pendList != (&eventCB->stEventList);) {
⑷          nextTask = LOS_DL_LIST_ENTRY(resumedTask->pendList.pstNext, LosTaskCB, pendList);⑸          if (((resumedTask->eventMode & LOS_WAITMODE_OR) && (resumedTask->eventMask & events) != 0) ||((resumedTask->eventMode & LOS_WAITMODE_AND) &&((resumedTask->eventMask & eventCB->uwEventID) == resumedTask->eventMask))) {
⑹              exitFlag = 1;OsSchedTaskWake(resumedTask);}
⑺          resumedTask = nextTask;}if (exitFlag == 1) {LOS_IntRestore(intSave);
⑻          LOS_Schedule();return LOS_OK;}}LOS_IntRestore(intSave);return LOS_OK;
}

3.4 清除事件

我们可以使用函数UINT32 LOS_EventClear(PEVENT_CB_S eventCB, UINT32 eventMask)来清除指定的事件类型,下面通过分析源码看看如何清除事件类型的。

函数参数为事件结构体eventCB和要清除的事件类型eventMask。清除事件时首先会进行结构体参数是否为空的校验,这些比较简单。⑴处把事件结构体的事件掩码和要清除的事件类型eventMask进行逻辑与计算,来完成事件的清理。

LITE_OS_SEC_TEXT_MINOR UINT32 LOS_EventClear(PEVENT_CB_S eventCB, UINT32 eventMask)
{UINT32 intSave;if (eventCB == NULL) {return LOS_ERRNO_EVENT_PTR_NULL;}intSave = LOS_IntLock();
⑴  eventCB->uwEventID &= eventMask;LOS_IntRestore(intSave);OsHookCall(LOS_HOOK_TYPE_EVENT_CLEAR, eventCB);return LOS_OK;
}

3.5 销毁事件

我们可以使用函数UINT32 LOS_EventDestroy(PEVENT_CB_S eventCB)来销毁指定的事件控制块,下面通过分析源码看看如何销毁事件的。

函数参数为事件结构体,销毁事件时首先会进行结构体参数是否为空的校验,这些比较简单。⑴处如果事件的任务阻塞链表不为空,则不能销毁事件。⑵把事件结构体的读取事件的任务链表stEventList设置为空,完成事件的销毁。

LITE_OS_SEC_TEXT_INIT UINT32 LOS_EventDestroy(PEVENT_CB_S eventCB)
{UINT32 intSave;if (eventCB == NULL) {return LOS_ERRNO_EVENT_PTR_NULL;}intSave = LOS_IntLock();⑴  if (!LOS_ListEmpty(&eventCB->stEventList)) {LOS_IntRestore(intSave);return LOS_ERRNO_EVENT_SHOULD_NOT_DESTORY;}
⑵  eventCB->stEventList.pstNext = (LOS_DL_LIST *)NULL;eventCB->stEventList.pstPrev = (LOS_DL_LIST *)NULL;LOS_IntRestore(intSave);OsHookCall(LOS_HOOK_TYPE_EVENT_DESTROY);return LOS_OK;
}

小结

本文带领大家一起剖析了鸿蒙轻内核的事件模块的源代码,包含事件的结构体、事件初始化、事件创建删除、申请释放等。

写在最后

如果你觉得这篇内容对你还蛮有帮助,我想邀请你帮我三个小忙

  • 关注小编,同时可以期待后续文章ing🚀,不定期分享原创知识。
  • 想要获取更多完整鸿蒙最新学习资源,请看下图提示:

这篇关于鸿蒙轻内核M核源码分析系列十二 事件Event的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143700

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串