COI实验室技能:图像到图像的深度学习开发框架(pytorch版)

2024-09-07 01:28

本文主要是介绍COI实验室技能:图像到图像的深度学习开发框架(pytorch版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Basic deep learning framework for image-to-image

这个开发框架旨在帮助科研人员快速地实现图像到图像之间的模型开发。
github连接:https://github.com/SituLab/Basic-deep-learning-framework-for-image-to-image
在这里插入图片描述

目录

  • 1模型开发
    • 1-1克隆项目到本地
    • 1-2深度学习开发
  • 2环境配置
    • 2-1安装conda
    • 2-2安装pytorch

1模型开发

1-1克隆项目到本地

(1)仓库右上角有个绿色‘code’按钮,下拉选择download zip。

(2)或者安装了git工具之后,在命令行运行下面指令:

git clone https://github.com/SituLab/Basic-deep-learning-framework-for-image-to-image.git

(3)数据集设置

dataset/input/存放输入的数据集;
dataset/label存放标签的数据集;
dataset/test_input存放测试输入的数据集;

1-2深度学习开发

(1)训练image-to-image任务

python main.py --running_name demo

(2)测试image-to-image任务

python main.py --running_name demo --is_training 0 --is_testing 1

(3)测试单张图像

python main.py --is_training 0 --img_path dataset/demo.png

(5)参数解释

--running_name:为每次训练提供一个运行名称,代码会创建相应名称的文件夹保存结果和日志。

注:非常便于网络的多次运行和分析,比如设置一个递增的版本名称,设置循环,可以一次进行重复实验。

--is_train:设置是否训练,默认训练;

--is_test:设置是否测试,默认测试;

--img_path:指定一张测试图像的路径;

(6)查看训练过程

  • log_demo.txt保存了此次训练所使用的配置信息和训练过程信息;
  • weights/demo/best_model.pth保存了验证集loss最小的模型;
  • results/demo/eval/保存了每一步训练时一个batch的推理结果;

(7)其他

在快速训练上,可以使用上述命令行的方法,如果需要细致开发,可以使用vscode或pycharm,使用编译器运行代码。

2环境配置

建议有高配电脑,或者直接使用远程服务器已经配置好的环境。

2-1安装conda

annaconda,自带基础的python库,比较齐全,占用空间会比较大,网址:https://www.anaconda.com/download/
miniconda,纯净版conda命令软件,不自带库,需自行安装,占用空间小,网址:https://docs.anaconda.com/miniconda/

2-2安装pytorch

访问torch官网,直接通过指令进行安装。网址:https://pytorch.org/get-started/locally/
在这里插入图片描述

比如:打开cmd,输入:

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

3例子

会将参数配置、模型结果、训练epoch的信息记录到日志中;
在这里插入图片描述

会保存每一个epoch的验证集结果(第一个batch的),如下图所示的是从严重退化的散射图中恢复出清晰的图像。
在这里插入图片描述

这篇关于COI实验室技能:图像到图像的深度学习开发框架(pytorch版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143663

相关文章

PyQt5 GUI 开发的基础知识

《PyQt5GUI开发的基础知识》Qt是一个跨平台的C++图形用户界面开发框架,支持GUI和非GUI程序开发,本文介绍了使用PyQt5进行界面开发的基础知识,包括创建简单窗口、常用控件、窗口属性设... 目录简介第一个PyQt程序最常用的三个功能模块控件QPushButton(按钮)控件QLable(纯文本

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Python Web框架Flask、Streamlit、FastAPI示例详解

《PythonWeb框架Flask、Streamlit、FastAPI示例详解》本文对比分析了Flask、Streamlit和FastAPI三大PythonWeb框架:Flask轻量灵活适合传统应用... 目录概述Flask详解Flask简介安装和基础配置核心概念路由和视图模板系统数据库集成实际示例Stre

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现