COI实验室技能:图像到图像的深度学习开发框架(pytorch版)

2024-09-07 01:28

本文主要是介绍COI实验室技能:图像到图像的深度学习开发框架(pytorch版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Basic deep learning framework for image-to-image

这个开发框架旨在帮助科研人员快速地实现图像到图像之间的模型开发。
github连接:https://github.com/SituLab/Basic-deep-learning-framework-for-image-to-image
在这里插入图片描述

目录

  • 1模型开发
    • 1-1克隆项目到本地
    • 1-2深度学习开发
  • 2环境配置
    • 2-1安装conda
    • 2-2安装pytorch

1模型开发

1-1克隆项目到本地

(1)仓库右上角有个绿色‘code’按钮,下拉选择download zip。

(2)或者安装了git工具之后,在命令行运行下面指令:

git clone https://github.com/SituLab/Basic-deep-learning-framework-for-image-to-image.git

(3)数据集设置

dataset/input/存放输入的数据集;
dataset/label存放标签的数据集;
dataset/test_input存放测试输入的数据集;

1-2深度学习开发

(1)训练image-to-image任务

python main.py --running_name demo

(2)测试image-to-image任务

python main.py --running_name demo --is_training 0 --is_testing 1

(3)测试单张图像

python main.py --is_training 0 --img_path dataset/demo.png

(5)参数解释

--running_name:为每次训练提供一个运行名称,代码会创建相应名称的文件夹保存结果和日志。

注:非常便于网络的多次运行和分析,比如设置一个递增的版本名称,设置循环,可以一次进行重复实验。

--is_train:设置是否训练,默认训练;

--is_test:设置是否测试,默认测试;

--img_path:指定一张测试图像的路径;

(6)查看训练过程

  • log_demo.txt保存了此次训练所使用的配置信息和训练过程信息;
  • weights/demo/best_model.pth保存了验证集loss最小的模型;
  • results/demo/eval/保存了每一步训练时一个batch的推理结果;

(7)其他

在快速训练上,可以使用上述命令行的方法,如果需要细致开发,可以使用vscode或pycharm,使用编译器运行代码。

2环境配置

建议有高配电脑,或者直接使用远程服务器已经配置好的环境。

2-1安装conda

annaconda,自带基础的python库,比较齐全,占用空间会比较大,网址:https://www.anaconda.com/download/
miniconda,纯净版conda命令软件,不自带库,需自行安装,占用空间小,网址:https://docs.anaconda.com/miniconda/

2-2安装pytorch

访问torch官网,直接通过指令进行安装。网址:https://pytorch.org/get-started/locally/
在这里插入图片描述

比如:打开cmd,输入:

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

3例子

会将参数配置、模型结果、训练epoch的信息记录到日志中;
在这里插入图片描述

会保存每一个epoch的验证集结果(第一个batch的),如下图所示的是从严重退化的散射图中恢复出清晰的图像。
在这里插入图片描述

这篇关于COI实验室技能:图像到图像的深度学习开发框架(pytorch版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143663

相关文章

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”