ARM架构(五)——MMU①

2024-09-07 01:28
文章标签 架构 arm mmu

本文主要是介绍ARM架构(五)——MMU①,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.MMU基础

1.1 为什么要用MMU,为什么要用虚拟地址?

MMU的作用,主要是完成地址的翻译,即虚拟地址到物理地址的转换,无论是main-memory地址(DDR地址),还是IO地址(设备device地址),在开启了MMU的系统中,CPU发起的指令读取、数据读写都是虚拟地址,在ARM Core内部,会先经过MMU将该虚拟地址自动转换成物理地址,然后在将物理地址发送到AXI总线上,完成真正的物理内存、物理设备的读写访问。
可以让系统中的多个程序跑在自己独立的虚拟地址空间中,相互不会影响。程序可以对底层的物理内存一无所知,物理地址可以是不连续的,但是不妨碍映射连续的虚拟地址空间
在这里插入图片描述

  • 多个程序独立执行(不需要知道具体物理地址)
  • 虚拟地址是连续的(程序可以在多个分段的物理内存运行)
  • 允许操作系统管理内存(哪些是可见的,哪些是允许读写的,哪些是cacheable的…)

1.2 MMU作用

MMU负责地址转换,包括:

1)table walk unit,负责从内存中读取页表;

在这里插入图片描述

2)TLBs,负责缓存最近使用的页表项;

需要强调的是,应用程序发起的任何内存地址访问都是虚拟地址。虚拟地址被发送给MMU,MMU首先在TLBs中查找是否有对应的页表项,如果没有找到对应的页表项,那么table walk unit会从内存中读取合适的页表项(table entry)

2.地址空间

在这里插入图片描述
CPU看到的都是虚拟地址,经过MMU页表转换,去访问真正的物理地址。
在这里插入图片描述

2.1 虚拟地址到物理地址的转换

虚拟地址到物理地址的映射通过查表的机制来实现,ARMv8中,Kernel Space的页表基地址存放在TTBR1_EL1寄存器中,User Space页表基地址存放在TTBR0_EL1寄存器中,其中内核地址空间的高位为全1,(0xFFFF0000_00000000 ~ 0xFFFFFFFF_FFFFFFFF),用户地址空间的高位为全0,(0x00000000_00000000 ~ 0x0000FFFF_FFFFFFFF)。
当然高位的连续1个数不是固定的,这里只是举个例子,可以通过参数配置不同的空间大小。
在这里插入图片描述

MMU会根据映射表来查找虚拟地址对应的物理页表入口,对于用户态的内存映射表,我们使用的映射表TTBR0_EL0,而对于内核态,对应的TTBR1_EL1。区别就是TTBR1_EL1可以映射外设物理地址、ROM和RAM,而TTBR0_EL0只能映射到RAM。ARMv8架构通过这种方式来分离映射用户层和内核层的虚拟地址。
每个页面都需要在操作系统中进行记录,毕竟你要使用它,必须得知道它的起始地址、大小、是否已经被分配等信息,而记录每个页面的相关信息也需要内存,这就是管理成本。同时,既然操作系统是按照页面进行记录的,那么在使用内存时也是以页面为单位,但是实际的内存使用中并不会刚好用完一个页面,可能只有 2/3 页,默认情况下,剩下的 1/3 也就被浪费了,这就是内存的利用率。那么,那剩下的 1/3 是不是可以继续使用呢,当然也是可以的,但是操作系统又得花一些内存去记录那 1/3 内存的起始地址以及使用的相关信息,又增加了管理成本,而管理成本越高,管理所浪费的内存越多,所以这很矛盾。

为了实现更高的效率,查表的过程往往是分级实现的,分多少级?每一级覆盖多大?这就设计Translation granule的概念。它定义了va的最小管理粒度。

在这里插入图片描述

页面大小支持:
支持3种页面大小:4KB, 16KB, 64KB。
页表支持:
支持至少两级页表,至多四级页表,Level 0 ~ Level 3。
结合有效虚拟地址位, 页面大小,页表的级数,可以组合成不同的页表映射方式。

  1. 页表大小为4kB
    当你使用4kB的颗粒大小时,硬件可以使用4级查找过程。48位地址每一级有9个地址位被翻译,即每一级有512个条目,最后的12位在4kB内选择一个字节,直接来自原始地址。
    在这里插入图片描述

3 MMU模型


MMU三大作用:(1)地址翻译(2)权限管理(3)内存属性配置 (cache 和使能)

这篇关于ARM架构(五)——MMU①的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1143660

相关文章

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

mysql中的服务器架构详解

《mysql中的服务器架构详解》:本文主要介绍mysql中的服务器架构,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、mysql服务器架构解释3、总结1、背景简单理解一下mysqphpl的服务器架构。2、mysjsql服务器架构解释mysql的架

k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)

《k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)》本文记录在K8s上运行的MySQL/MariaDB备份方案,通过工具容器执行mysqldump,结合定时任务实... 目录前言一、获取需要备份的数据库的信息二、备份步骤1.准备工作(X86)1.准备工作(arm)2.手

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

Java异常架构Exception(异常)详解

《Java异常架构Exception(异常)详解》:本文主要介绍Java异常架构Exception(异常),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. Exception 类的概述Exception的分类2. 受检异常(Checked Exception)

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

微服务架构之使用RabbitMQ进行异步处理方式

《微服务架构之使用RabbitMQ进行异步处理方式》本文介绍了RabbitMQ的基本概念、异步调用处理逻辑、RabbitMQ的基本使用方法以及在SpringBoot项目中使用RabbitMQ解决高并发... 目录一.什么是RabbitMQ?二.异步调用处理逻辑:三.RabbitMQ的基本使用1.安装2.架构

mybatis的整体架构

mybatis的整体架构分为三层: 1.基础支持层 该层包括:数据源模块、事务管理模块、缓存模块、Binding模块、反射模块、类型转换模块、日志模块、资源加载模块、解析器模块 2.核心处理层 该层包括:配置解析、参数映射、SQL解析、SQL执行、结果集映射、插件 3.接口层 该层包括:SqlSession 基础支持层 该层保护mybatis的基础模块,它们为核心处理层提供了良好的支撑。

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

系统架构设计师: 信息安全技术

简简单单 Online zuozuo: 简简单单 Online zuozuo 简简单单 Online zuozuo 简简单单 Online zuozuo 简简单单 Online zuozuo :本心、输入输出、结果 简简单单 Online zuozuo : 文章目录 系统架构设计师: 信息安全技术前言信息安全的基本要素:信息安全的范围:安全措施的目标:访问控制技术要素:访问控制包括:等保