《机器学习》 基于SVD的矩阵分解 推导、案例实现

2024-09-07 01:20

本文主要是介绍《机器学习》 基于SVD的矩阵分解 推导、案例实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、SVD奇异值分解

1、什么是SVD

2、SVD的应用

        1)数据降维

        2)推荐算法

        3)自然语言处理

3、核心

        1)什么是酉矩阵

        2)什么是对角矩阵

4、分解过程

二、推导

1、如何求解这三个矩阵

        1)已知: 

        2)根据酉矩阵的特点即可得出:

        3)隐含条件:

        4)计算:

        5)结论

2、实例

        1)求U与V对应的协方差矩阵

        2)求各自协方差矩阵对应的特征值和特征向量

                • 求A^T A对应的特征值和特征向量

                • 求 A A^T 对应的特征值和特征向量

三、代码实现

1、导包

2、代码演示

运行结果为:

代码调试状态:


一、SVD奇异值分解

1、什么是SVD

        SVD就是奇异值分解。在机器学习中,SVD是一种常用的矩阵分解方法,用于将一个矩阵分解为三个矩阵的乘积。具体来说,对于一个m×n的实数矩阵A,SVD将其分解为以下形式:

                A = UΣV^T

        其中,U是一个m×m的正交矩阵Σ是一个m×n的对角矩阵V^T是一个n×n的正交矩阵。Σ的对角线上的元素称为奇异值,表示原始矩阵A在对应的奇异向量方向上的重要程度

2、SVD的应用

        1)数据降维

                可以通过保留最重要的奇异值和对应的奇异向量,将原始数据降维到一个较低维度的表示,以减少数据的冗余和计算复杂度。

        2)推荐算法

                SVD可以分解用户-项目评分矩阵,从而得到用户和项目在一个低维的潜在空间中的表示,进而进行推荐。

        3)自然语言处理

                SVD可以用于词向量的降维和表示,从而实现语义分析任务,如文本分类、情感分析、语义相似度计算,也可以用于对大规模文本数据进行降维和压缩,从而提高文本处理和存储的效率。

3、核心

        对于任意矩阵A,我们总能够将其分解位三个矩阵𝑈 𝛴 𝑉 𝑇 。
其中: \bigcup 为酉矩阵\sum 为对角阵V^{T} 为酉矩阵

        1)什么是酉矩阵

                酉矩阵是线性代数中的一种特殊类型的矩阵。一个n×n的复矩阵U被称为酉矩阵,如果它满足以下条件:

                1、U的共轭转置乘以U的结果等于单位矩阵I:U^H × U = I,其中U^H表示U的共轭转置。

                2、U的逆矩阵等于它的共轭转置:U^(-1) = U^H。

        2)什么是对角矩阵

                对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵

4、分解过程

二、推导

1、如何求解这三个矩阵

        1)已知: 

        2)根据酉矩阵的特点即可得出:

        3)隐含条件:

        4)计算:

        5)结论

                        𝑈:𝐴𝐴^𝑇 的特征向量.
                        𝛴^2:𝐴𝐴^ 𝑇 的特征值.
                        𝑉:𝐴^𝑇 𝐴 的特征向量

2、实例

        1)求U与V对应的协方差矩阵

        2)求各自协方差矩阵对应的特征值和特征向量
                • 求A^T A对应的特征值和特征向量

                • 求 A A^T 对应的特征值和特征向量

三、代码实现

1、导包

pip install pillow

2、代码演示

import numpy as np
from PIL import Image   # 导入PIL库中的Image模块,用于处理图像文件
import matplotlib.pyplot as plt  # 导入绘图库def pic_compress(k,pic_array):   # k表示保留的奇异值数量,pic_array表示输入的图像数组global u,sigma,vt,sig,new_pic  # 定义全局变量u,sigma,vt = np.linalg.svd(pic_array)   # 使用np库中的linalg模块的svd方法,对图像的数值进行奇异值分解,得到三个矩阵U、Σ和V^T,其中U和V是正交矩阵,Σ是一个对角矩阵,对角线上的元素称为奇异值sig = np.eye(k) * sigma[:k]   # 使用np中的函数eye生成一个kxk的单位矩阵,上述生成的sigma为奇异值,现在取前k个值,将其转换成对角矩阵,即对角线上的值为奇异值,其余值为0new_pic = np.dot(np.dot(u[:,:k],sig),vt[:k,:]) # dot用于执行数组乘法size = u.shape[0] * k + sig.shape[0] * sig.shape[1] + k * vt.shape[1]  # 变换后的图像为u矩阵、sigma矩阵和vt矩阵,这里计算图像的大小return new_pic,size  # 返回压缩后的图像数值和尺寸大小img = Image.open('timg.jpg')  # 打开图像
ori_img = np.array(img)   # 将图像转换成numpy数组
new_img ,size = pic_compress(100,ori_img)  # 调用pic_compress函数对图像进行压缩,导入图片数组,100表示保留的前100个奇异值
print('original size:'+ str(ori_img.shape[0]*ori_img.shape[1]))  # 原始图片的大小,shape[0]和[1]分别表示行数和列数
print('compress size:' + str(size))  # 打印压缩后的像素大小fig,ax = plt.subplots(1,2)  # 设置画布有两张图,fig是整个图像的窗口对象,ax是两个图像的数组
ax[0].imshow(ori_img,cmap='gray')  # 展示第一个图形,为原始图像,cmp='gray'表示图像以灰度图展示
ax[0].set_title('before compress')   # 设置第一个图像的标题
ax[1].imshow(new_img,cmap='gray')   # 展示第二个图像,为压缩后的图像
ax[1].set_title("after compress")
plt.show()
运行结果为:

左侧为原始图像,右侧为压缩后图像,他们的大小为:

代码调试状态:

这篇关于《机器学习》 基于SVD的矩阵分解 推导、案例实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143658

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依