《机器学习》 基于SVD的矩阵分解 推导、案例实现

2024-09-07 01:20

本文主要是介绍《机器学习》 基于SVD的矩阵分解 推导、案例实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、SVD奇异值分解

1、什么是SVD

2、SVD的应用

        1)数据降维

        2)推荐算法

        3)自然语言处理

3、核心

        1)什么是酉矩阵

        2)什么是对角矩阵

4、分解过程

二、推导

1、如何求解这三个矩阵

        1)已知: 

        2)根据酉矩阵的特点即可得出:

        3)隐含条件:

        4)计算:

        5)结论

2、实例

        1)求U与V对应的协方差矩阵

        2)求各自协方差矩阵对应的特征值和特征向量

                • 求A^T A对应的特征值和特征向量

                • 求 A A^T 对应的特征值和特征向量

三、代码实现

1、导包

2、代码演示

运行结果为:

代码调试状态:


一、SVD奇异值分解

1、什么是SVD

        SVD就是奇异值分解。在机器学习中,SVD是一种常用的矩阵分解方法,用于将一个矩阵分解为三个矩阵的乘积。具体来说,对于一个m×n的实数矩阵A,SVD将其分解为以下形式:

                A = UΣV^T

        其中,U是一个m×m的正交矩阵Σ是一个m×n的对角矩阵V^T是一个n×n的正交矩阵。Σ的对角线上的元素称为奇异值,表示原始矩阵A在对应的奇异向量方向上的重要程度

2、SVD的应用

        1)数据降维

                可以通过保留最重要的奇异值和对应的奇异向量,将原始数据降维到一个较低维度的表示,以减少数据的冗余和计算复杂度。

        2)推荐算法

                SVD可以分解用户-项目评分矩阵,从而得到用户和项目在一个低维的潜在空间中的表示,进而进行推荐。

        3)自然语言处理

                SVD可以用于词向量的降维和表示,从而实现语义分析任务,如文本分类、情感分析、语义相似度计算,也可以用于对大规模文本数据进行降维和压缩,从而提高文本处理和存储的效率。

3、核心

        对于任意矩阵A,我们总能够将其分解位三个矩阵𝑈 𝛴 𝑉 𝑇 。
其中: \bigcup 为酉矩阵\sum 为对角阵V^{T} 为酉矩阵

        1)什么是酉矩阵

                酉矩阵是线性代数中的一种特殊类型的矩阵。一个n×n的复矩阵U被称为酉矩阵,如果它满足以下条件:

                1、U的共轭转置乘以U的结果等于单位矩阵I:U^H × U = I,其中U^H表示U的共轭转置。

                2、U的逆矩阵等于它的共轭转置:U^(-1) = U^H。

        2)什么是对角矩阵

                对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵

4、分解过程

二、推导

1、如何求解这三个矩阵

        1)已知: 

        2)根据酉矩阵的特点即可得出:

        3)隐含条件:

        4)计算:

        5)结论

                        𝑈:𝐴𝐴^𝑇 的特征向量.
                        𝛴^2:𝐴𝐴^ 𝑇 的特征值.
                        𝑉:𝐴^𝑇 𝐴 的特征向量

2、实例

        1)求U与V对应的协方差矩阵

        2)求各自协方差矩阵对应的特征值和特征向量
                • 求A^T A对应的特征值和特征向量

                • 求 A A^T 对应的特征值和特征向量

三、代码实现

1、导包

pip install pillow

2、代码演示

import numpy as np
from PIL import Image   # 导入PIL库中的Image模块,用于处理图像文件
import matplotlib.pyplot as plt  # 导入绘图库def pic_compress(k,pic_array):   # k表示保留的奇异值数量,pic_array表示输入的图像数组global u,sigma,vt,sig,new_pic  # 定义全局变量u,sigma,vt = np.linalg.svd(pic_array)   # 使用np库中的linalg模块的svd方法,对图像的数值进行奇异值分解,得到三个矩阵U、Σ和V^T,其中U和V是正交矩阵,Σ是一个对角矩阵,对角线上的元素称为奇异值sig = np.eye(k) * sigma[:k]   # 使用np中的函数eye生成一个kxk的单位矩阵,上述生成的sigma为奇异值,现在取前k个值,将其转换成对角矩阵,即对角线上的值为奇异值,其余值为0new_pic = np.dot(np.dot(u[:,:k],sig),vt[:k,:]) # dot用于执行数组乘法size = u.shape[0] * k + sig.shape[0] * sig.shape[1] + k * vt.shape[1]  # 变换后的图像为u矩阵、sigma矩阵和vt矩阵,这里计算图像的大小return new_pic,size  # 返回压缩后的图像数值和尺寸大小img = Image.open('timg.jpg')  # 打开图像
ori_img = np.array(img)   # 将图像转换成numpy数组
new_img ,size = pic_compress(100,ori_img)  # 调用pic_compress函数对图像进行压缩,导入图片数组,100表示保留的前100个奇异值
print('original size:'+ str(ori_img.shape[0]*ori_img.shape[1]))  # 原始图片的大小,shape[0]和[1]分别表示行数和列数
print('compress size:' + str(size))  # 打印压缩后的像素大小fig,ax = plt.subplots(1,2)  # 设置画布有两张图,fig是整个图像的窗口对象,ax是两个图像的数组
ax[0].imshow(ori_img,cmap='gray')  # 展示第一个图形,为原始图像,cmp='gray'表示图像以灰度图展示
ax[0].set_title('before compress')   # 设置第一个图像的标题
ax[1].imshow(new_img,cmap='gray')   # 展示第二个图像,为压缩后的图像
ax[1].set_title("after compress")
plt.show()
运行结果为:

左侧为原始图像,右侧为压缩后图像,他们的大小为:

代码调试状态:

这篇关于《机器学习》 基于SVD的矩阵分解 推导、案例实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143658

相关文章

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句