分布式系统理论基础三-时间、时钟和事件顺序

2024-09-06 22:38

本文主要是介绍分布式系统理论基础三-时间、时钟和事件顺序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


GitHub:https://github.com/wangzhiwubigdata/God-Of-BigData

                   关注公众号,内推,面试,资源下载,关注更多大数据技术~大数据成神之路~预计更新500+篇文章,已经更新50+篇~ 

现实生活中时间是很重要的概念,时间可以记录事情发生的时刻、比较事情发生的先后顺序。分布式系统的一些场景也需要记录和比较不同节点间事件发生的顺序,但不同于日常生活使用物理时钟记录时间,分布式系统使用逻辑时钟记录事件顺序关系,下面我们来看分布式系统中几种常见的逻辑时钟。

物理时钟 vs 逻辑时钟

可能有人会问,为什么分布式系统不使用物理时钟(physical clock)记录事件?每个事件对应打上一个时间戳,当需要比较顺序的时候比较相应时间戳就好了。

这是因为现实生活中物理时间有统一的标准,而分布式系统中每个节点记录的时间并不一样,即使设置了 NTP 时间同步节点间也存在毫秒级别的偏差。因而分布式系统需要有另外的方法记录事件顺序关系,这就是逻辑时钟(logical clock)。

Lamport timestamps

Leslie Lamport 在1978年提出逻辑时钟的概念,并描述了一种逻辑时钟的表示方法,这个方法被称为Lamport时间戳(Lamport timestamps)。

分布式系统中按是否存在节点交互可分为三类事件,一类发生于节点内部,二是发送事件,三是接收事件。Lamport时间戳原理如下:

8f34d242db587edc776d863de2565845.png

图1: Lamport timestamps space time (图片来源: wikipedia)

每个事件对应一个Lamport时间戳,初始值为0
如果事件在节点内发生,时间戳加1
如果事件属于发送事件,时间戳加1并在消息中带上该时间戳
如果事件属于接收事件,时间戳 = Max(本地时间戳,消息中的时间戳) + 1

假设有事件a、b,C(a)、C(b)分别表示事件a、b对应的Lamport时间戳,如果C(a) < C(b),则有a发生在b之前(happened before),记作 a -> b,例如图1中有 C1 -> B1。通过该定义,事件集中Lamport时间戳不等的事件可进行比较,我们获得事件的偏序关系(partial order)。

如果C(a) = C(b),那a、b事件的顺序又是怎样的?假设a、b分别在节点P、Q上发生,Pi、Qj分别表示我们给P、Q的编号,如果 C(a) = C(b) 并且 Pi < Qj,同样定义为a发生在b之前,记作 a => b。假如我们对图1的A、B、C分别编号Ai = 1、Bj = 2、Ck = 3,因 C(B4) = C(C3) 并且 Bj < Ck,则 B4 => C3。

通过以上定义,我们可以对所有事件排序、获得事件的全序关系(total order)。上图例子,我们可以从C1到A4进行排序。

Vector clock

Lamport时间戳帮助我们得到事件顺序关系,但还有一种顺序关系不能用Lamport时间戳很好地表示出来,那就是同时发生关系(concurrent)。例如图1中事件B4和事件C3没有因果关系,属于同时发生事件,但Lamport时间戳定义两者有先后顺序。

Vector clock是在Lamport时间戳基础上演进的另一种逻辑时钟方法,它通过vector结构不但记录本节点的Lamport时间戳,同时也记录了其他节点的Lamport时间戳。Vector clock的原理与Lamport时间戳类似,使用图例如下:

2613ec2d7fd0fd6d7d936731306cb432.png
图2: Vector clock space time (图片来源: wikipedia)

假设有事件a、b分别在节点P、Q上发生,Vector clock分别为Ta、Tb,如果 Tb[Q] > Ta[Q] 并且 Tb[P] >= Ta[P],则a发生于b之前,记作 a -> b。到目前为止还和Lamport时间戳差别不大,那Vector clock怎么判别同时发生关系呢?

如果 Tb[Q] > Ta[Q] 并且 Tb[P] < Ta[P],则认为a、b同时发生,记作 a <-> b。例如图2中节点B上的第4个事件 (A:2,B:4,C:1) 与节点C上的第2个事件 (B:3,C:2) 没有因果关系、属于同时发生事件。

Version vector

基于Vector clock我们可以获得任意两个事件的顺序关系,结果或为先后顺序或为同时发生,识别事件顺序在工程实践中有很重要的引申应用,最常见的应用是发现数据冲突(detect conflict)。

分布式系统中数据一般存在多个副本(replication),多个副本可能被同时更新,这会引起副本间数据不一致,Version vector的实现与Vector clock非常类似[8],目的用于发现数据冲突。下面通过一个例子说明Version vector的用法:

e88cec85c18803dbd6f0f18ae72ea721.png
图3: Version vector

  • client端写入数据,该请求被Sx处理并创建相应的vector ([Sx, 1]),记为数据D1
  • 第2次请求也被Sx处理,数据修改为D2,vector修改为([Sx, 2])
  • 第3、第4次请求分别被Sy、Sz处理,client端先读取到D2,然后D3、D4被写入Sy、Sz
  • 第5次更新时client端读取到D2、D3和D4 3个数据版本,通过类似Vector clock判断同时发生关系的方法可判断D3、D4存在数据冲突,最终通过一定方法解决数据冲突并写入D5

Vector clock只用于发现数据冲突,不能解决数据冲突。如何解决数据冲突因场景而异,具体方法有以最后更新为准(last write win),或将冲突的数据交给client由client端决定如何处理,或通过quorum决议事先避免数据冲突的情况发生。

由于记录了所有数据在所有节点上的逻辑时钟信息,Vector clock和Version vector在实际应用中可能面临的一个问题是vector过大,用于数据管理的元数据(meta data)甚至大于数据本身。

解决该问题的方法是使用server id取代client id创建vector (因为server的数量相对client稳定),或设定最大的size、如果超过该size值则淘汰最旧的vector信息。

小结

以上介绍了分布式系统里逻辑时钟的表示方法,通过Lamport timestamps可以建立事件的全序关系,通过Vector clock可以比较任意两个事件的顺序关系并且能表示无因果关系的事件,将Vector clock的方法用于发现数据版本冲突,于是有了Version vector。

参考资料:

[1] Time is an illusion, George Neville-Neil, 2016

[2] There is No Now, Justin Sheehy, 2015

[3] Time, Clocks, and the Ordering of Events in a Distributed System, Leslie Lamport, 1978

[4] Timestamps in Message-Passing Systems That Preserve the Partial Ordering, Colin J. Fidge, 1988

[5] Virtual Time and Global States of Distributed Systems, Friedemann Mattern, 1988

[6] Why Vector Clocks are Easy, Bryan Fink, 2010

[7] Conflict Management, CouchDB

[8] Version Vectors are not Vector Clocks, Carlos Baquero, 2011

[9] Detection of Mutual Inconsistency in Distributed Systems, IEEE Transactions on Software Engineering , 1983

[10] Dynamo: Amazon’s Highly Available Key-value Store, Amazon, 2007

[11] Conflict Resolution, Jeff Darcy , 2010

[12] Why Vector Clocks Are Hard, Justin Sheehy, 2010

[13] Causality Is Expensive (and What To Do About It), Peter Bailis ,2014

这篇关于分布式系统理论基础三-时间、时钟和事件顺序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143324

相关文章

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

Spring Boot集成SLF4j从基础到高级实践(最新推荐)

《SpringBoot集成SLF4j从基础到高级实践(最新推荐)》SLF4j(SimpleLoggingFacadeforJava)是一个日志门面(Facade),不是具体的日志实现,这篇文章主要介... 目录一、日志框架概述与SLF4j简介1.1 为什么需要日志框架1.2 主流日志框架对比1.3 SLF4