Netty源码解析7-ChannelHandler实例之TimeoutHandler

2024-09-06 22:32

本文主要是介绍Netty源码解析7-ChannelHandler实例之TimeoutHandler,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

请戳GitHub原文: https://github.com/wangzhiwubigdata/God-Of-BigData

TimeoutHandler

在开发TCP服务时,一个常见的需求便是使用心跳保活客户端。而Netty自带的三个超时处理器IdleStateHandler,ReadTimeoutHandler和WriteTimeoutHandler可完美满足此需求。其中IdleStateHandler可处理读超时(客户端长时间没有发送数据给服务端)、写超时(服务端长时间没有发送数据到客户端)和读写超时(客户端与服务端长时间无数据交互)三种情况。这三种情况的枚举为:

public enum IdleState {READER_IDLE,    // 读超时WRITER_IDLE,    // 写超时ALL_IDLE    // 数据交互超时}

以IdleStateHandler的读超时事件为例进行分析,首先看类签名:

 public class IdleStateHandler extends ChannelDuplexHandler

注意到此Handler没有Sharable注解,这是因为每个连接的超时时间是特有的即每个连接有独立的状态,所以不能标注Sharable注解。继承自ChannelDuplexHandler是因为既要处理读超时又要处理写超时。
该类的一个典型构造方法如下:

    public IdleStateHandler(int readerIdleTimeSeconds, int writerIdleTimeSeconds, int allIdleTimeSeconds) {this(readerIdleTimeSeconds, writerIdleTimeSeconds,  allIdleTimeSeconds, TimeUnit.SECONDS);}

分别设定各个超时事件的时间阈值。以读超时事件为例,有以下相关的字段:

// 用户配置的读超时时间private final long readerIdleTimeNanos;// 判定超时的调度任务Futureprivate ScheduledFuture<?> readerIdleTimeout;// 最近一次读取数据的时间private long lastReadTime;// 是否第一次读超时事件private boolean firstReaderIdleEvent = true;// 状态,0 - 无关, 1 - 初始化完成 2 - 已被销毁private byte state; // 是否正在读取private boolean reading;

首先看初始化方法initialize():

    private void initialize(ChannelHandlerContext ctx) {switch (state) {case 1: // 初始化进行中或者已完成case 2: // 销毁进行中或者已完成return;}state = 1;lastReadTime = ticksInNanos();if (readerIdleTimeNanos > 0) {readerIdleTimeout = schedule(ctx, new ReaderIdleTimeoutTask(ctx),readerIdleTimeNanos, TimeUnit.NANOSECONDS);}

初始化的工作较为简单,设定最近一次读取时间lastReadTime为当前系统时间,然后在用户设置的读超时时间readerIdleTimeNanos截止时,执行一个ReaderIdleTimeoutTask进行检测。其中使用的方法很简洁,如下:

     long ticksInNanos() {return System.nanoTime();}ScheduledFuture<?> schedule(ChannelHandlerContext ctx, Runnable task, long delay, TimeUnit unit) {return ctx.executor().schedule(task, delay, unit);}

然后,分析销毁方法destroy():

private void destroy() {state = 2;  // 这里结合initialize对比理解if (readerIdleTimeout != null) {// 取消调度任务,并置nullreaderIdleTimeout.cancel(false);readerIdleTimeout = null;}}

可知销毁的处理也很简单,分析完初始化和销毁,再看这两个方法被调用的地方,initialize()在三个方法中被调用:

public void handlerAdded(ChannelHandlerContext ctx) throws Exception {if (ctx.channel().isActive() &&ctx.channel().isRegistered()) {initialize(ctx);} }public void channelRegistered(ChannelHandlerContext ctx) throws Exception {if (ctx.channel().isActive()) {initialize(ctx);}super.channelRegistered(ctx);}public void channelActive(ChannelHandlerContext ctx) throws Exception {initialize(ctx);super.channelActive(ctx);}

当客户端与服务端成功建立连接后,Channel被激活,此时channelActive的初始化被调用;如果Channel被激活后,动态添加此Handler,则handlerAdded的初始化被调用;如果Channel被激活,用户主动切换Channel的执行线程Executor,则channelRegistered的初始化被调用。这一部分较难理解,请仔细体会。destroy()则有两处调用:

 public void channelInactive(ChannelHandlerContext ctx) throws Exception {destroy();super.channelInactive(ctx);}public void handlerRemoved(ChannelHandlerContext ctx) throws Exception {destroy();}

即该Handler被动态删除时,handlerRemoved的销毁被执行;Channel失效时,channelInactive的销毁被执行。
分析完这些,在分析核心的调度任务ReaderIdleTimeoutTask:

private final class ReaderIdleTimeoutTask implements Runnable {private final ChannelHandlerContext ctx;ReaderIdleTimeoutTask(ChannelHandlerContext ctx) {this.ctx = ctx;}@Overrideprotected void run() {if (!ctx.channel().isOpen()) {// Channel不再有效return;}long nextDelay = readerIdleTimeNanos;if (!reading) {// nextDelay<=0 说明在设置的超时时间内没有读取数据nextDelay -= ticksInNanos() - lastReadTime;}// 隐含正在读取时,nextDelay = readerIdleTimeNanos > 0if (nextDelay <= 0) {// 超时时间已到,则再次调度该任务本身readerIdleTimeout = schedule(ctx, this, readerIdleTimeNanos, TimeUnit.NANOSECONDS);boolean first = firstReaderIdleEvent;firstReaderIdleEvent = false;try {IdleStateEvent event =newIdleStateEvent(IdleState.READER_IDLE, first);channelIdle(ctx, event); // 模板方法处理} catch (Throwable t) {ctx.fireExceptionCaught(t);}} else {// 注意此处的nextDelay值,会跟随lastReadTime刷新readerIdleTimeout = schedule(ctx, this, nextDelay, TimeUnit.NANOSECONDS);}}}

这个读超时检测任务执行的过程中又递归调用了它本身进行下一次调度,请仔细品味该种使用方法。再列出channelIdle()的代码:

 protected void channelIdle(ChannelHandlerContext ctx, IdleStateEvent evt) throws Exception {ctx.fireUserEventTriggered(evt);}

本例中,该方法将写超时事件作为用户事件传播到下一个Handler,用户需要在某个Handler中拦截该事件进行处理。该方法标记为protect说明子类通常可覆盖,ReadTimeoutHandler子类即定义了自己的处理:

@Overrideprotected final void channelIdle(ChannelHandlerContext ctx, IdleStateEvent evt)throws Exception {assert evt.state() == IdleState.READER_IDLE;readTimedOut(ctx);}protected void readTimedOut(ChannelHandlerContext ctx) throws Exception {if (!closed) {ctx.fireExceptionCaught(ReadTimeoutException.INSTANCE);ctx.close();closed = true;}}

可知在ReadTimeoutHandler中,如果发生读超时事件,将会关闭该Channel。当进行心跳处理时,使用IdleStateHandler较为麻烦,一个简便的方法是:直接继承ReadTimeoutHandler然后覆盖readTimedOut()进行用户所需的超时处理。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xmNCsEIP-1647065341608)(https://user-gold-cdn.xitu.io/2019/2/22/16915de58b6f8285?w=300&h=390&f=png&s=14824)]

	请戳GitHub原文: https://github.com/wangzhiwubigdata/God-Of-BigData关注公众号,内推,面试,资源下载,关注更多大数据技术~大数据成神之路~预计更新500+篇文章,已经更新60+篇~ 

这篇关于Netty源码解析7-ChannelHandler实例之TimeoutHandler的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143303

相关文章

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

MySQL CTE (Common Table Expressions)示例全解析

《MySQLCTE(CommonTableExpressions)示例全解析》MySQL8.0引入CTE,支持递归查询,可创建临时命名结果集,提升复杂查询的可读性与维护性,适用于层次结构数据处... 目录基本语法CTE 主要特点非递归 CTE简单 CTE 示例多 CTE 示例递归 CTE基本递归 CTE 结

MySQL多实例管理如何在一台主机上运行多个mysql

《MySQL多实例管理如何在一台主机上运行多个mysql》文章详解了在Linux主机上通过二进制方式安装MySQL多实例的步骤,涵盖端口配置、数据目录准备、初始化与启动流程,以及排错方法,适用于构建读... 目录一、什么是mysql多实例二、二进制方式安装MySQL1.获取二进制代码包2.安装基础依赖3.清

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Apache Ignite缓存基本操作实例详解

《ApacheIgnite缓存基本操作实例详解》文章介绍了ApacheIgnite中IgniteCache的基本操作,涵盖缓存获取、动态创建、销毁、原子及条件更新、异步执行,强调线程池注意事项,避免... 目录一、获取缓存实例(Getting an Instance of a Cache)示例代码:二、动态

Spring Boot 3.x 中 WebClient 示例详解析

《SpringBoot3.x中WebClient示例详解析》SpringBoot3.x中WebClient是响应式HTTP客户端,替代RestTemplate,支持异步非阻塞请求,涵盖GET... 目录Spring Boot 3.x 中 WebClient 全面详解及示例1. WebClient 简介2.

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima