Apache-Flink深度解析-Temporal-Table-JOIN

2024-09-06 22:18

本文主要是介绍Apache-Flink深度解析-Temporal-Table-JOIN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

640

在《JOIN LATERAL》中提到了Temporal Table JOIN,本篇就向大家详细介绍什么是Temporal Table JOIN。
在ANSI-SQL 2011 中提出了Temporal 的概念,Oracle,SQLServer,DB2等大的数据库厂商也先后实现了这个标准。Temporal Table记录了历史上任何时间点所有的数据改动,Temporal Table的工作流程如下:
640上图示意Temporal Table具有普通table的特性,有具体独特的DDL/DML/QUERY语法,时间是其核心属性。历史意味着时间,意味着快照Snapshot。

我们以一个DDL和一套DML示例说明Temporal Table的原理,DDL定义PK是可选的,下面的示例我们以不定义PK的为例进行说明:

  • DDL 示例

CREATE TABLE Emp
ENo INTEGER,
Sys_Start TIMESTAMP(12) GENERATED
ALWAYS AS ROW Start,
Sys_end TIMESTAMP(12) GENERATED
ALWAYS AS ROW END,
EName VARCHAR(30),
PERIOD FOR SYSTEM_TIME (Sys_Start,Sys_end)
) WITH SYSTEM VERSIONING
  • DML 示例

  1. INSERT

INSERT INTO Emp (ENo, EName) VALUES (22217, 'Joe')

640

说明: 其中Sys_Start和Sys_End是数据库系统默认填充的。

  1. UPDATE

UPDATE Emp SET EName = 'Tom' WHERE ENo = 22217

640

 说明: 假设是在 2012-02-03 10:00:00 执行的UPDATE,执行之后上一个值"Joe"的Sys_End值由9999-12-31 23:59:59 变成了 2012-02-03 10:00:00, 也就是下一个值"Tom"生效的开始时间。可见我们执行的是UPDATE但是数据库里面会存在两条数据,数据值和有效期不同,也就是版本不同。

  1. DELETE (假设执行DELETE之前的表内容如下)
    640

DELETE FROM Emp WHERE ENo = 22217

640

说明: 假设我们是在2012-06-01 00:00:00执行的DELETE,则Sys_End值由9999-12-31 23:59:59 变成了 2012-06-01 00:00:00, 也就是在执行DELETE时候没有真正的删除符合条件的行,而是系统将符合条件的行的Sys_end修改为执行DELETE的操作时间。标识数据的有效期到DELETE执行那一刻为止。

  1. SELECT

SELECT ENo,EName,Sys_Start,Sys_End FROM Emp 
FOR SYSTEM_TIME AS OF TIMESTAMP '2011-01-02 00:00:00'

说明: 这个查询会返回所有Sys_Start <= 2011-01-02 00:00:00 并且 Sys_end > 2011-01-02 00:00:00 的记录。

SQLServer Temporal Table 示例

DDL

CREATE TABLE Department
(
DeptID int NOT NULL PRIMARY KEY CLUSTERED
, DeptName varchar(50) NOT NULL
, ManagerID INT NULL
, ParentDeptID int NULL
, SysStartTime datetime2 GENERATED ALWAYS AS ROW Start NOT NULL
, SysEndTime datetime2 GENERATED ALWAYS AS ROW END NOT NULL
, PERIOD FOR SYSTEM_TIME (SysStartTime,SysEndTime)
)
WITH (SYSTEM_VERSIONING = ON);

执行上面的语句,在数据库会创建当前表和历史表,如下图:
640Department 显示是有版本控制的,历史表是默认的名字,我也可以指定名字如:SYSTEM_VERSIONING = ON (HISTORY_TABLE = dbo.DepartmentHistory)。

DML

  • INSERT - 插入列不包含SysStartTime和SysEndTime列

INSERT INTO [dbo].[Department]([DeptID] ,[DeptName] ,[ManagerID] ,[ParentDeptID])
VALUES(10, 'Marketing', 101, 1);

执行之后我们分别查询当前表和历史表,如下图:
640

我们第一条INSERT语句数据值的有效时间是操作那一刻2018-06-06 05:50:20.7913985 到永远 9999-12-31 23:59:59.9999999,但这时刻历史表还没有任何信息。我们接下来进行更新操作。

  • UPDATE

UPDATE [dbo].[Department] SET [ManagerID] = 501 WHERE [DeptID] = 10
执行之后当前表信息会更新并在历史表里面产生一条历史信息,如下:

640

注意当前表的SysStartTime意见发生了变化,历史表产生了一条记录,SyStartTIme是原当前表记录的SysStartTime,SysEndTime是当前表记录的SystemStartTime。我们再更新一次:

UPDATE [dbo].[Department] SET [ManagerID] = 201 WHERE [DeptID] = 10

640

到这里我们了解到SQLServer里面关于Temporal Table的逻辑是有当前表和历史表来存储数据,并且数据库内部以StartTime和EndTime的方式管理数据的版本。

  • SELECT 

SELECT [DeptID], [DeptName], [SysStartTime],[SysEndTime]
FROM [dbo].[Department]
FOR SYSTEM_TIME AS OF '2018-06-06 05:50:21.0000000' ;

640SELECT语句查询的是Department的表,实际返回的数据是从历史表里面查询出来的,查询的底层逻辑就是 SysStartTime <= '2018-06-06 05:50:21.0000000' and SysEndTime > '2018-06-06 05:50:21.0000000' 。

Apache Flink Temporal Table

我们不止一次的提到Apache Flink遵循ANSI-SQL标准,Apache Flink中Temporal Table的概念也源于ANSI-2011的标准语义,但目前的实现在语法层面和ANSI-SQL略有差别,上面看到ANSI-2011中使用FOR SYSTEM_TIME AS OF的语法,目前Apache Flink中使用 LATERAL TABLE(TemporalTableFunction)的语法。这一点后续需要推动社区进行改进

为啥需要 Temporal Table

我们以具体的查询示例来说明为啥需要Temporal Table,假设我们有一张实时变化的汇率表(RatesHistory),如下:

rowtime(ts)currency(pk)rate
09:00:00US Dollar102
09:00:00Euro114
09:00:00Yen1
10:45:00Euro116
11:15:00Euro119
11:49:00Pounds108

RatesHistory代表了Yen汇率(Yen汇率为1),是不断变化的Append only的汇率表。例如,Euro兑Yen汇率从09:00至10:45的汇率为114。从10点45分到11点15分是116。

假设我们想在10:58输出所有当前汇率,我们需要以下SQL查询来计算结果表:

SELECT *
FROM RatesHistory AS r
WHERE r.rowtime = (
SELECT MAX(rowtime)
FROM RatesHistory AS r2
WHERE r2.currency = r.currency
AND r2.rowtime <= '10:58');
相应Flink代码如下:
  • 定义数据源-genRatesHistorySource

def genRatesHistorySource: CsvTableSource = {

val csvRecords = Seq(
"rowtime ,currency ,rate",
"09:00:00 ,US Dollar , 102",
"09:00:00 ,Euro , 114",
"09:00:00 ,Yen , 1",
"10:45:00 ,Euro , 116",
"11:15:00 ,Euro , 119",
"11:49:00 ,Pounds , 108"
)
// 测试数据写入临时文件
val tempFilePath =
writeToTempFile(csvRecords.mkString("$"), "csv_source_", "tmp")

// 创建Source connector
new CsvTableSource(
tempFilePath,
Array("rowtime","currency","rate"),
Array(
Types.STRING,Types.STRING,Types.STRING
),
fieldDelim = ",",
rowDelim = "$",
ignoreFirstLine = true,
ignoreComments = "%"
)
}

def writeToTempFile(
contents: String,
filePrefix: String,
fileSuffix: String,
charset: String = "UTF-8"): String = {
val tempFile = File.createTempFile(filePrefix, fileSuffix)
val tmpWriter = new OutputStreamWriter(new FileOutputStream(tempFile), charset)
tmpWriter.write(contents)
tmpWriter.close()
tempFile.getAbsolutePath
}
  • 主程序代码

def main(args: Array[String]): Unit = {
// Streaming 环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
val tEnv = TableEnvironment.getTableEnvironment(env)

//方便我们查出输出数据
env.setParallelism(1)

val sourceTableName = "RatesHistory"
// 创建CSV source数据结构
val tableSource = CsvTableSourceUtils.genRatesHistorySource
// 注册source
tEnv.registerTableSource(sourceTableName, tableSource)

// 注册retract sink
val sinkTableName = "retractSink"
val fieldNames = Array("rowtime", "currency", "rate")
val fieldTypes: Array[TypeInformation[_]] = Array(Types.STRING, Types.STRING, Types.STRING)

tEnv.registerTableSink(
sinkTableName,
fieldNames,
fieldTypes,
new MemoryRetractSink)

val SQL =
"""
|SELECT *
|FROM RatesHistory AS r
|WHERE r.rowtime = (
| SELECT MAX(rowtime)
| FROM RatesHistory AS r2
| WHERE r2.currency = r.currency
| AND r2.rowtime <= '10:58:00' )
"
"".stripMargin

// 执行查询
val result = tEnv.SQLQuery(SQL)

// 将结果插入sink
result.insertInto(sinkTableName)
env.execute()
}
  • 执行结果如下图:

结果表格化一下:

rowtime(ts)currency(pk)rate
09:00:00US Dollar102
09:00:00Yen1
10:45:00Euro116

Temporal Table的概念旨在简化此类查询,加速它们的执行。Temporal Table是Append Only表上的参数化视图,它把Append Only的表变化解释为表的Changelog,并在特定时间点提供该表的版本(时间版本)。将Applend Only表解释为changelog需要指定主键属性和时间戳属性。主键确定覆盖哪些行,时间戳确定行有效的时间,也就是数据版本,与上面SQL Server示例的有效期的概念一致。

在上面的示例中,currency是RatesHistory表的主键,而rowtime是timestamp属性。

如何定义Temporal Table

在Apache Flink中扩展了TableFunction的接口,在TableFunction接口的基础上添加了时间属性和pk属性。

  • 内部TemporalTableFunction定义如下:

class TemporalTableFunction private(
@transient private val underlyingHistoryTable: Table,
// 时间属性,相当于版本信息
private val timeAttribute: Expression,
// 主键定义
private val primaryKey: String,
private val resultType: RowTypeInfo)
extends TableFunction[Row] {
...
}
  • 用户创建TemporalTableFunction方式
    Table中添加了createTemporalTableFunction方法,该方法需要传入时间属性和主键,接口定义如下:

// Creates TemporalTableFunction backed up by this table as a history table.

def createTemporalTableFunction(
timeAttribute: Expression,
primaryKey: Expression)
:
TemporalTableFunction = {
...
}

用户通过如下方式调用就可以得到一个TemporalTableFunction的实例,代码如下:

val tab = ...
val temporalTableFunction = tab.createTemporalTableFunction('time, 'pk)
...

案例代码

  • 需求描述
    假设我们有一张订单表Orders和一张汇率表Rates,那么订单来自于不同的地区,所以支付的币种各不一样,那么假设需要统计每个订单在下单时候Yen币种对应的金额。

  • Orders 数据

amountcurrencyorder_time
2Euro2
1US Dollar3
50Yen4
3Euro5
  • Rates 数据

currencyraterate_time
US Dollar1021
Euro1141
Yen11
Euro1165
Euro1177
  • 统计需求对应的SQL

SELECT o.currency, o.amount, r.rate
o.amount * r.rate AS yen_amount
FROM
Orders AS o,
LATERAL TABLE (Rates(o.rowtime)) AS r
WHERE r.currency = o.currency
  • 预期结果

currencyamountrateyen_amount
US Dollar1102102
Yen50150
Euro2114228
Euro3116348

Without connnector 实现代码

object TemporalTableJoinTest {
def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
val tEnv = TableEnvironment.getTableEnvironment(env)
env.setParallelism(1)
// 设置时间类型是 event-time env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
// 构造订单数据
val ordersData = new mutable.MutableList[(Long, String, Timestamp)]
ordersData.+=((2L, "Euro", new Timestamp(2L)))
ordersData.+=((1L, "US Dollar", new Timestamp(3L)))
ordersData.+=((50L, "Yen", new Timestamp(4L)))
ordersData.+=((3L, "Euro", new Timestamp(5L)))

//构造汇率数据
val ratesHistoryData = new mutable.MutableList[(String, Long, Timestamp)]
ratesHistoryData.+=(("US Dollar", 102L, new Timestamp(1L)))
ratesHistoryData.+=(("Euro", 114L, new Timestamp(1L)))
ratesHistoryData.+=(("Yen", 1L, new Timestamp(1L)))
ratesHistoryData.+=(("Euro", 116L, new Timestamp(5L)))
ratesHistoryData.+=(("Euro", 119L, new Timestamp(7L)))

// 进行订单表 event-time 的提取
val orders = env
.fromCollection(ordersData)
.assignTimestampsAndWatermarks(new OrderTimestampExtractor[Long, String]())
.toTable(tEnv, 'amount, 'currency, 'rowtime.rowtime)

// 进行汇率表 event-time 的提取
val ratesHistory = env
.fromCollection(ratesHistoryData)
.assignTimestampsAndWatermarks(new OrderTimestampExtractor[String, Long]())
.toTable(tEnv, '
currency, 'rate, 'rowtime.rowtime)

// 注册订单表和汇率表
tEnv.registerTable("Orders", orders)
tEnv.registerTable("RatesHistory", ratesHistory)
val tab = tEnv.scan("RatesHistory");
// 创建TemporalTableFunction
val temporalTableFunction = tab.createTemporalTableFunction('rowtime, 'currency)
//注册TemporalTableFunction
tEnv.registerFunction("Rates",temporalTableFunction)

val SQLQuery =
"""
|SELECT o.currency, o.amount, r.rate,
| o.amount * r.rate AS yen_amount
|FROM
| Orders AS o,
| LATERAL TABLE (Rates(o.rowtime)) AS r
|WHERE r.currency = o.currency
|"
"".stripMargin

tEnv.registerTable("TemporalJoinResult", tEnv.SQLQuery(SQLQuery))

val result = tEnv.scan("TemporalJoinResult").toAppendStream[Row]
// 打印查询结果
result.print()
env.execute()
}

}

在运行上面代码之前需要注意上面代码中对EventTime时间提取的过程,也就是说Apache Flink的TimeCharacteristic.EventTime 模式,需要调用assignTimestampsAndWatermarks方法设置EventTime的生成方式,这种方式也非常灵活,用户可以控制业务数据的EventTime的值和WaterMark的产生,WaterMark相关内容可以查阅《Apache Flink 漫谈系列(03) - Watermark》。 在本示例中提取EventTime的完整代码如下:

import java.SQL.Timestamp

import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor
import org.apache.flink.streaming.api.windowing.time.Time

class OrderTimestampExtractor[T1, T2]
extends BoundedOutOfOrdernessTimestampExtractor[(T1, T2, Timestamp)](Time.seconds(10)) {
override def extractTimestamp(element: (T1, T2, Timestamp)): Long = {
element._3.getTime
}
}

查看运行结果:

With CSVConnector 实现代码

在实际的生产开发中,都需要实际的Connector的定义,下面我们以CSV格式的Connector定义来开发Temporal Table JOIN Demo。

  • genEventRatesHistorySource

def genEventRatesHistorySource: CsvTableSource = {

val csvRecords = Seq(
"ts#currency#rate",
"1#US Dollar#102",
"1#Euro#114",
"1#Yen#1",
"3#Euro#116",
"5#Euro#119",
"7#Pounds#108"
)
// 测试数据写入临时文件
val tempFilePath =
FileUtils.writeToTempFile(csvRecords.mkString(CommonUtils.line), "csv_source_rate", "tmp")

// 创建Source connector
new CsvTableSource(
tempFilePath,
Array("ts","currency","rate"),
Array(
Types.LONG,Types.STRING,Types.LONG
),
fieldDelim = "#",
rowDelim = CommonUtils.line,
ignoreFirstLine = true,
ignoreComments = "%"
)
}
  • genRatesOrderSource

def genRatesOrderSource: CsvTableSource = {

val csvRecords = Seq(
"ts#currency#amount",
"2#Euro#10",
"4#Euro#10"
)
// 测试数据写入临时文件
val tempFilePath =
FileUtils.writeToTempFile(csvRecords.mkString(CommonUtils.line), "csv_source_order", "tmp")

// 创建Source connector
new CsvTableSource(
tempFilePath,
Array("ts","currency", "amount"),
Array(
Types.LONG,Types.STRING,Types.LONG
),
fieldDelim = "#",
rowDelim = CommonUtils.line,
ignoreFirstLine = true,
ignoreComments = "%"
)
}
  • 主程序代码

/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.flink.book.connectors

import java.io.File

import org.apache.flink.api.common.typeinfo.{TypeInformation, Types}
import org.apache.flink.book.utils.{CommonUtils, FileUtils}
import org.apache.flink.table.sinks.{CsvTableSink, TableSink}
import org.apache.flink.table.sources.CsvTableSource
import org.apache.flink.types.Row

object CsvTableSourceUtils {

def genWordCountSource: CsvTableSource = {
val csvRecords = Seq(
"words",
"Hello Flink",
"Hi, Apache Flink",
"Apache FlinkBook"
)
// 测试数据写入临时文件
val tempFilePath =
FileUtils.writeToTempFile(csvRecords.mkString("$"), "csv_source_", "tmp")

// 创建Source connector
new CsvTableSource(
tempFilePath,
Array("words"),
Array(
Types.STRING
),
fieldDelim = "#",
rowDelim = "$",
ignoreFirstLine = true,
ignoreComments = "%"
)
}


def genRatesHistorySource: CsvTableSource = {

val csvRecords = Seq(
"rowtime ,currency ,rate",
"09:00:00 ,US Dollar , 102",
"09:00:00 ,Euro , 114",
"09:00:00 ,Yen , 1",
"10:45:00 ,Euro , 116",
"11:15:00 ,Euro , 119",
"11:49:00 ,Pounds , 108"
)
// 测试数据写入临时文件
val tempFilePath =
FileUtils.writeToTempFile(csvRecords.mkString("$"), "csv_source_", "tmp")

// 创建Source connector
new CsvTableSource(
tempFilePath,
Array("rowtime","currency","rate"),
Array(
Types.STRING,Types.STRING,Types.STRING
),
fieldDelim = ",",
rowDelim = "$",
ignoreFirstLine = true,
ignoreComments = "%"
)
}

def genEventRatesHistorySource: CsvTableSource = {

val csvRecords = Seq(
"ts#currency#rate",
"1#US Dollar#102",
"1#Euro#114",
"1#Yen#1",
"3#Euro#116",
"5#Euro#119",
"7#Pounds#108"
)
// 测试数据写入临时文件
val tempFilePath =
FileUtils.writeToTempFile(csvRecords.mkString(CommonUtils.line), "csv_source_rate", "tmp")

// 创建Source connector
new CsvTableSource(
tempFilePath,
Array("ts","currency","rate"),
Array(
Types.LONG,Types.STRING,Types.LONG
),
fieldDelim = "#",
rowDelim = CommonUtils.line,
ignoreFirstLine = true,
ignoreComments = "%"
)
}

def genRatesOrderSource: CsvTableSource = {

val csvRecords = Seq(
"ts#currency#amount",
"2#Euro#10",
"4#Euro#10"
)
// 测试数据写入临时文件
val tempFilePath =
FileUtils.writeToTempFile(csvRecords.mkString(CommonUtils.line), "csv_source_order", "tmp")

// 创建Source connector
new CsvTableSource(
tempFilePath,
Array("ts","currency", "amount"),
Array(
Types.LONG,Types.STRING,Types.LONG
),
fieldDelim = "#",
rowDelim = CommonUtils.line,
ignoreFirstLine = true,
ignoreComments = "%"
)
}


/**
* Example:
* genCsvSink(
* Array[String]("word", "count"),
* Array[TypeInformation[_] ](Types.STRING, Types.LONG))
*/
def genCsvSink(fieldNames: Array[String], fieldTypes: Array[TypeInformation[_]]): TableSink[Row] = {
val tempFile = File.createTempFile("csv_sink_", "tem")
if (tempFile.exists()) {
tempFile.delete()
}
new CsvTableSink(tempFile.getAbsolutePath).configure(fieldNames, fieldTypes)
}

}

运行结果如下 :

640

内部实现原理

我们还是以订单和汇率关系示例来说明Apache Flink内部实现Temporal Table JOIN的原理,如下图所示:

640

Temporal Table JOIN vs 双流JOIN vs Lateral JOIN

在《JOIN算子》中我们介绍了双流JOIN,在《JOIN LATERAL》中我们介绍了 JOIN LATERAL(TableFunction),那么本篇介绍的Temporal Table JOIN和双流JOIN/JOIN LATERAL(TableFunction)有什么本质区别呢?

  • 双流JOIN - 双流JOIN本质很明确是 Stream JOIN Stream,双流驱动。

  • LATERAL JOIN - Lateral JOIN的本质是Steam JOIN Table Function, 是单流驱动。

  • Temporal Table JOIN - Temporal Table JOIN 的本质就是 Stream JOIN Temporal Table 或者 Stream JOIN Table with snapshot。Temporal Table JOIN 特点
    单流驱动,Temporal Table 是被动查询。

Temporal Table JOIN vs  LATERAL JOIN

从功能上说Temporal Table JOIN和 LATERAL JOIN都是由左流一条数据获取多行数据,也就是单流驱动,并且都是被动查询,那么Temporal JOIN和LATERAL JOIN最本质的区别是什么呢?这里我们说最关键的一点是 State 的管理,LATERAL JOIN是一个TableFunction,不具备state的管理能力,数据不具备版本特性。而Temporal Table JOIN是一个具备版本信息的数据表。

Temporal Table JOIN vs 双流 JOIN

Temporal Table JOIN 和 双流 JOIN都可以管理State,那么他们的本质区别是什么? 那就是计算驱动的差别,Temporal Table JOIN是单边驱动,Temporal Table是被动的查询,而双流JOIN是双边驱动,两边都是主动的进行JOIN计算。

Temporal Table JOIN改进

个人认为Apache Flink的Temporal Table JOIN功能不论在语法和语义上面都要遵循ANSI-SQL标准,后期会推动社区在Temporal Table上面支持ANSI-SQL的FOR SYSTEM_TIME AS OF标准语法。改进后的处理逻辑示意图:
640

其中cache是一种性能考虑的优化,详细内容待社区完善后再细述。

小结

本篇结合ANSI-SQL标准和SQL Server对Temporal Table的支持来开篇,然后介绍目前Apache Flink对Temporal Table的支持现状,以代码示例和内部处理逻辑示意图的方式让大家直观体验Temporal Table JOIN的语法和语义。

640?wx_fmt=jpeg

这篇关于Apache-Flink深度解析-Temporal-Table-JOIN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143271

相关文章

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java JDK Validation 注解解析与使用方法验证

《JavaJDKValidation注解解析与使用方法验证》JakartaValidation提供了一种声明式、标准化的方式来验证Java对象,与框架无关,可以方便地集成到各种Java应用中,... 目录核心概念1. 主要注解基本约束注解其他常用注解2. 核心接口使用方法1. 基本使用添加依赖 (Maven