2024高教社杯全国大学生数学建模竞赛C题原创python代码

本文主要是介绍2024高教社杯全国大学生数学建模竞赛C题原创python代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2024高教社杯全国大学生数学建模竞赛C题原创python代码

C题题目:农作物的种植策略

思路可以参考我主页之前的文章

以下均为python代码,推荐用anaconda中的notebook当作编译环境

from gurobipy import Model
import pandas as pd
import gurobipy as gp
from gurobipy import GRB
import numpy as np# 读取execl数据
data1 = pd.read_excel('附件1-乡村现有耕地和农作物的基本情况.xlsx')
data2 = pd.read_excel('附件2-2023 年乡村农作物种植和相关统计数据.xlsx')
# 读取execl数据的表2
data11 = pd.read_excel('附件1-乡村现有耕地和农作物的基本情况.xlsx',sheet_name='乡村种植的农作物')
data22 = pd.read_excel('附件2-2023 年乡村农作物种植和相关统计数据.xlsx',sheet_name='2023年统计的相关数据')
# 显示前十个数据
data1.head(10)

# 地块数据
land_data = {"地块名称":['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B9', 'B10', 'B11', 'B12', 'B13', 'B14', 'C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'D1', 'D2', 'D3', 'D4', 'D5', 'D6', 'D7', 'D8', 'E1', 'E2', 'E3', 'E4', 'E5', 'E6', 'E7', 'E8', 'E9', 'E10', 'E11', 'E12', 'E13', 'E14', 'E15', 'E16', 'F1', 'F2', 'F3', 'F4'],"地块类型":["平旱地"]*6 + ["梯田"]*14 + ["山坡地"]*6 + ["水浇地"]*8 + ["普通大棚"]*16 + ["智慧大棚"]*4,
}
land_df = pd.DataFrame(land_data)
# 在land_df中添加地块面积data1['地块面积/亩']
land_df['地块面积/亩'] = data1['地块面积/亩']
land_df# 作物数据
# 从data11中获取作物名称和作物编号作为crop_data
crop_data = {"作物名称":data11['作物名称'],"作物编号":data11['作物编号'],"作物类型":data11['作物类型']
}
crop_df = pd.DataFrame(crop_data)
crop_df

# 创建地块名称的列表
land = data1['地块名称'].tolist()
# 创建地块面积的列表
area = data1['地块面积/亩'].tolist()
# 创建作物名称的列表,去重
crop = list(set(data2['作物名称'].tolist()))# 根据作物名称设计一个字典,key是作物名称,value是data11中作物编号和作物种类和种植耕地的列表
crop_dict = {}
for i in range(len(data11)):crop_dict[data11['作物名称'][i]] = [data11['作物编号'][i],data11['作物类型'][i],data11['种植耕地'][i]]
# 显示crop_dict
print(crop_dict)

data24 = pd.read_excel('附件2-2023 年乡村农作物种植和相关统计数据.xlsx', sheet_name='2023的农作物种植情况汇总')
data24

# data24的销售单价1和销售单价2取平均值,作为销售单价
data24['销售单价'] = (data24['销售单价1/(元/斤)']+data24['销售单价2/(元/斤)'])/2# 将作物名称作为索引,销售单价作为值,创建一个字典
price_dict = data24.set_index('作物名称')['销售单价'].to_dict()
# 将作物名称作为索引,种植成本/(元/亩)作为值,创建一个字典
cost_dict = data24.set_index('作物名称')['种植成本/(元/亩)'].to_dict()
# 将作物名称作为索引,亩产量/斤作为值,创建一个字典
yield_dict = data24.set_index('作物名称')['亩产量/斤'].to_dict()
# 将地块名称作为索引,地块面积/亩作为值,创建一个字典
area_dict = data1.set_index('地块名称')['地块面积/亩'].to_dict()# 创建模型
model = gp.Model("crop_optimization")# 定义决策变量
crop_fields = ['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B9', 'B10', 'B11', 'B12', 'B13', 'B14', 'C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'D1', 'D2', 'D3', 'D4', 'D5', 'D6', 'D7', 'D8', 'E1', 'E2', 'E3', 'E4', 'E5', 'E6', 'E7', 'E8', 'E9', 'E10', 'E11', 'E12', 'E13', 'E14', 'E15', 'E16', 'F1', 'F2', 'F3', 'F4']
crops = ['黄豆', '黑豆', '红豆', '绿豆', '爬豆', '小麦', '玉米', '谷子', '高粱', '黍子', '荞麦', '南瓜', '红薯', '莜麦', '大麦', '水稻', '豇豆', '刀豆', '芸豆', '土豆', '西红柿', '茄子', '菠菜', '青椒', '菜花', '包菜', '油麦菜', '小青菜', '黄瓜', '生菜', '辣椒', '空心菜', '黄心菜', '芹菜', '大白菜', '白萝卜', '红萝卜', '榆黄菇', '香菇', '白灵菇', '羊肚菌']
seasons = ['第一季', '第二季']
x = model.addVars(crop_fields, crops, seasons, vtype=GRB.INTEGER, name="x")# 目标函数:最大化总收益
revenue = price_dict
cost = cost_dict
# 地块面积字典(单位:亩)
field_area = area_dict
# 亩产量字典(单位:斤/亩)
yield_per_mu = yield_dict# 目标函数:最大化总收益
model.setObjective(gp.quicksum(revenue[crop] * x[field, crop, season] * yield_per_mu[crop] - cost[crop] * x[field, crop, season] for field in crop_fields for crop in crops for season in seasons), GRB.MAXIMIZE)

以上仅为部分。其中更详细的思路、各题目思路、代码、讲解视频、成品论文及其他相关内容,可以点击下方名片哦:

这篇关于2024高教社杯全国大学生数学建模竞赛C题原创python代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143242

相关文章

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Python获取浏览器Cookies的四种方式小结

《Python获取浏览器Cookies的四种方式小结》在进行Web应用程序测试和开发时,获取浏览器Cookies是一项重要任务,本文我们介绍四种用Python获取浏览器Cookies的方式,具有一定的... 目录什么是 Cookie?1.使用Selenium库获取浏览器Cookies2.使用浏览器开发者工具

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

Python Web框架Flask、Streamlit、FastAPI示例详解

《PythonWeb框架Flask、Streamlit、FastAPI示例详解》本文对比分析了Flask、Streamlit和FastAPI三大PythonWeb框架:Flask轻量灵活适合传统应用... 目录概述Flask详解Flask简介安装和基础配置核心概念路由和视图模板系统数据库集成实际示例Stre