leetcode : 64 最小路径和 动态规划

2024-09-06 21:52

本文主要是介绍leetcode : 64 最小路径和 动态规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

64. 最小路径和

题目链接https://leetcode.cn/problems/minimum-path-sum/

题目描述

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例:

 [1,3,1][1,5,1][4,2,1]      

输出: 7

解释: 因为路径 1→3→1→1→1 的总和最小。

题目解法

从题目中我们可以知道,每次只能向下或者向右移动一步。

因此,第 i 行第 j 列的最小路径和与第 i-1 行第 j 列的最小路径和第i行第j-1列的最小路径和有关。

因此,我们可以用动态规划的方法来求解。

设 dp[i][j] 表示从左上角走到第 i 行第 j 列的最小路径和。

  1. 定义一个二维数组 dp,其中 dp[i][j] 表示从左上角走到第 i 行第 j 列的最小路径和。
  2. 则dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i][j],其中 grid[i][j] 表示网格中第 i 行第 j 列的元素。注意当i-1或者j-1越界时,说明无法从该点走到右下角,因此需要取最大值。
  3. 初始值 dp[0][0] = grid[0][0],其他 dp[i][j] = 0。
  4. 最后返回 dp[m-1][n-1],即为最小路径和。

代码实现

python版本:

class Solution:def minPathSum(self, grid: List[List[int]]) -> int:if not grid or not grid[0]:return 0m, n = len(grid), len(grid[0])dp = gridfor i in range(1, m):dp[i][0] = dp[i - 1][0] + grid[i][0]for j in range(1, n):dp[0][j] = dp[0][j - 1] + grid[0][j]for i in range(1, m):for j in range(1, n):dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]return dp[m - 1][n - 1]

Go版本:

func minPathSum(grid [][]int) int {m:=len(grid)n:=len(grid[0])res:=make([][]int,m)for i:=range res{res[i]=make([]int,n)}res[0][0]=grid[0][0]for i:=1;i<n;i++{res[0][i]=res[0][i-1]+grid[0][i]}for i:=1;i<m;i++{res[i][0]=res[i-1][0]+grid[i][0]}for i:=1;i<m;i++{for j:=1;j<n;j++{res[i][j]=min(res[i-1][j],res[i][j-1])+grid[i][j]}}return res[m-1][n-1]
}

C++版本:

class Solution {
public:int minPathSum(vector<vector<int>>& dp) {int m=dp.size(),n=dp[0].size();auto res=vector<vector<int>> (m,vector<int>(n));res[0][0]=dp[0][0];for(int i=1;i<m;i++){res[i][0]=res[i-1][0]+dp[i][0];}for(int j=1;j<n;j++){res[0][j]=res[0][j-1]+dp[0][j];}for(int i=1;i<m;i++){for(int j=1;j<n;j++){res[i][j]=min(res[i-1][j],res[i][j-1])+dp[i][j];}}return res[m-1][n-1];}
};

这篇关于leetcode : 64 最小路径和 动态规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143225

相关文章

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

VSCode设置python SDK路径的实现步骤

《VSCode设置pythonSDK路径的实现步骤》本文主要介绍了VSCode设置pythonSDK路径的实现步骤,包括命令面板切换、settings.json配置、环境变量及虚拟环境处理,具有一定... 目录一、通过命令面板快速切换(推荐方法)二、通过 settings.json 配置(项目级/全局)三、

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)

《如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)》:本文主要介绍如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)问题,具有很好的参考价值,希望对大家有所帮助,如有... 目录先在你打算存放的地方建四个文件夹更改这四个路径就可以修改默认虚拟内存分页js文件的位置接下来从高级-

SpringBoot实现Kafka动态反序列化的完整代码

《SpringBoot实现Kafka动态反序列化的完整代码》在分布式系统中,Kafka作为高吞吐量的消息队列,常常需要处理来自不同主题(Topic)的异构数据,不同的业务场景可能要求对同一消费者组内的... 目录引言一、问题背景1.1 动态反序列化的需求1.2 常见问题二、动态反序列化的核心方案2.1 ht

golang实现动态路由的项目实践

《golang实现动态路由的项目实践》本文主要介绍了golang实现动态路由项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习... 目录一、动态路由1.结构体(数据库的定义)2.预加载preload3.添加关联的方法一、动态路由1

一文详解如何查看本地MySQL的安装路径

《一文详解如何查看本地MySQL的安装路径》本地安装MySQL对于初学者或者开发人员来说是一项基础技能,但在安装过程中可能会遇到各种问题,:本文主要介绍如何查看本地MySQL安装路径的相关资料,需... 目录1. 如何查看本地mysql的安装路径1.1. 方法1:通过查询本地服务1.2. 方法2:通过MyS