Flink实时计算指标对数方案

2024-09-06 21:32

本文主要是介绍Flink实时计算指标对数方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

来源:大数据技术与架构读者投稿
作者:诸葛子房

点击右侧关注,大数据开发领域最强公众号!

点击右侧关注,暴走大数据!



By  大数据技术与架构

作者简介: 诸葛子房 ,目前就职于一线互联网公司,从事大数据相关工作,了解互联网、大数据相关内容,一直在学习的路上 。
原作者就在我们的交流群中,有需要的可以联系作者探讨。
回复:加群,拉你进讨论组。

关键词:Flink 指标对数 

对于一个实时数据产品人员、或者开发人员来说,产品上展示的实时数据,pv、uv、gmv等等,怎么知道这些数据是不是正确的呢?当其他的小组开发的产品的数据(或者其他的数据提供方)又是另外一个数字,那么究竟该如何判断自己的数据还是别人的数据是正确的呢?这就需要一套实时数据对数方案,本文主要从背景、实时数据计算方案、对数方案、总结四方面来介绍,说服老板或者让其他人相信自己的数据是准确的、无误的。

一、背景:

相信做过实时数据统计的朋友,肯定会遇到一个问题,怎么知道自己算的数据是不是对的呢?比如:pv、uv、dau、gmv、订单等等统计数据。

640

二、实时数据统计方案

640

上述流程图描述了一般的实时数据计算流程,接收日志或者MQ到kafka,用Flink进行处理和计算,将最终计算结果存储在redis中,最后查询出redis中的数据给大屏、看板等展示。

但是在整个过程中,不得不思考一下,最后计算出来的存储在redis中指标数据是不是正确的呢?怎么能给用户或者老板一个信服的理由呢?相信这个问题一定是困扰所有做实时数据开发的朋友。

比如说:离线的同事说离线昨天的数据订单是1w,实时昨天的数据确实2w,存在这么大的误差,到底是实时计算出问题了,还是离线出问题了呢?

三、对数解决方案

为了方便理解,还是拿上面离线和实时的下单金额为例。

某电商双11实时数据大屏最终展示的GMV是200亿,小李当晚汇报给老板,双11GMV是200亿。第二天晨会,离线的同事小王汇报给老板,双11GMV是300亿。同时又有一个数据部门的同事小赵说,我们这边计算的是192亿。老板听到这么多数据,一瞬间就不知道该相信谁的呢?然后就说,小李、小王你们两数据差距最大,你们对一下吧,汇报我一个最终结果。

于是,小王看着自己数据告诉小李:某人在我们平台下了30个iphone x合计多少钱、某人又在我们这里买了10台联想笔记本电脑合计多少钱 .......

小李看着最终展示在大屏上的200亿GMV,瞬间就蒙了,心里想道:我这里不知道谁买了多少个iphone呀,也不知道他们花了多少钱呀?

于是小李回去请教了自己的导师,导师说你把上面的实时宽表数据存储下来,就可以和他们对了,就知道谁买了多少个iphone x了,谁有买了多少个联想电脑了。

小李想了想,按照导师的思路开发如下的宽表加工方案:

(1)用Flink将实时宽表数据存储至elasticsearch

640

将加工的宽表数据通过Flink写入es,这样可以得到所有数据的明细数据,拿着明细和其他数据提供方进行比对即可。

(2)用Flink实时宽表数据存储至HDFS,通过Hive进行查询

但是有一些朋友可能会说,es对应的sql count、group by语法操作,非常复杂,况且也不是用来做线上服务,而只是用与对数,所以时效性也不需要完全考虑,这样的话,就可以考虑将数据回写至HDFS了。

因此可以考虑采用下图的方案,将加工的宽表通过Flink写入到HDFS,然后新建hive表进行关联HDFS数据进行关联查询。

640

写HDFS与es相比,存在非常明显的优点:

  • 学习成本低、会sql的基本就可以了,而不需要重新学习es负责的count、group by 等语法操作

  • 可以非常方便地和离线表数据进行关联查询(大多数情况下都是和离线数据比对),两张Hive表的关联查询,容易找出两张表的数据差异

最终小李拿着自己存储的明细数据和小王对了一下,发现是小王的口径不一样,没有排除一些预售订单,最终小李将汇报给老板,得到了老板的嘉奖。

四、总结

实时计算能提供给用户查看当前的实时统计数据,但是数据的准确性确实一个很大的问题,如何说服用户或者领导数据计算是没有问题的,就需要和其他的数据提供方进行比对了。问题的关键就在于,只要有明细数据,就可以和任意一方进行比对,毕竟有明细数据。不服?我们就对一对啊。

明细数据的存储、设计也很有讲究,可以和离线或者其他提供方的数据字段进行对齐,这样就非常方便进行比对了,而采用hive这种方式又是最简便的方式了,毕竟大多数人都是会sql的,无论开发人员还是数据人员或者BI人员。

欢迎点赞+收藏+转发朋友圈素质三连

640?wx_fmt=jpeg640?wx_fmt=jpeg

文章不错?点个【在看】吧! ?

这篇关于Flink实时计算指标对数方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143174

相关文章

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

MySQL 迁移至 Doris 最佳实践方案(最新整理)

《MySQL迁移至Doris最佳实践方案(最新整理)》本文将深入剖析三种经过实践验证的MySQL迁移至Doris的最佳方案,涵盖全量迁移、增量同步、混合迁移以及基于CDC(ChangeData... 目录一、China编程JDBC Catalog 联邦查询方案(适合跨库实时查询)1. 方案概述2. 环境要求3.

SpringBoot3.X 整合 MinIO 存储原生方案

《SpringBoot3.X整合MinIO存储原生方案》本文详细介绍了SpringBoot3.X整合MinIO的原生方案,从环境搭建到核心功能实现,涵盖了文件上传、下载、删除等常用操作,并补充了... 目录SpringBoot3.X整合MinIO存储原生方案:从环境搭建到实战开发一、前言:为什么选择MinI

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

解读GC日志中的各项指标用法

《解读GC日志中的各项指标用法》:本文主要介绍GC日志中的各项指标用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、基础 GC 日志格式(以 G1 为例)1. Minor GC 日志2. Full GC 日志二、关键指标解析1. GC 类型与触发原因2. 堆

SQLite3 在嵌入式C环境中存储音频/视频文件的最优方案

《SQLite3在嵌入式C环境中存储音频/视频文件的最优方案》本文探讨了SQLite3在嵌入式C环境中存储音视频文件的优化方案,推荐采用文件路径存储结合元数据管理,兼顾效率与资源限制,小文件可使用B... 目录SQLite3 在嵌入式C环境中存储音频/视频文件的专业方案一、存储策略选择1. 直接存储 vs

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

SpringBoot服务获取Pod当前IP的两种方案

《SpringBoot服务获取Pod当前IP的两种方案》在Kubernetes集群中,SpringBoot服务获取Pod当前IP的方案主要有两种,通过环境变量注入或通过Java代码动态获取网络接口IP... 目录方案一:通过 Kubernetes Downward API 注入环境变量原理步骤方案二:通过