基于实际业务场景下的Flume部署

2024-09-06 20:38

本文主要是介绍基于实际业务场景下的Flume部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方蓝色字体,选择“设为星标

回复”资源“获取更多资源

大数据技术与架构

点击右侧关注,大数据开发领域最强公众号!

暴走大数据

点击右侧关注,暴走大数据!

有这样一个场景,我们要基于某个web服务实时持续收集用户行为数据;
再实施方案前,我们做了以下的准备工作 (不细说)
  • web服务端部署nginx,用于收集用户行为并有形成log (172.17.111.111)

  • 我们数据平台是部署在Hadoop,数据最终固化到hdfs中 (172.22.222.17-19)

  • 数据平台和产生行为日志的机器最好同一个机房,网络环境要保持良好 (废话)

最终方案和技术选型
  • 采用flume服务收集日志

  • 收集的日志目的地统一为kafka

  • sparkstreaming消费kafka数据并固化到hdfs (hive或者kudu等等)

  • flume采用分布式部署结构
    -- 1.web端服务充当发送端
    -- 2.大数据平台的agent组成集群充当接受端
    -- 3.agent跟agent交互通过type=avro

部署flume服务
  • 还有一种方式就是在所在web工程引入flume的log4j代码,但这样会与原有代码冲突,改动大不考虑

  • 下载flume并解压 (web服务所在的机器 172.17.111.111)

#下载
wget http://mirrors.tuna.tsinghua.edu.cn/apache/flume/1.8.0/apache-flume-1.8.0-bin.tar.gz
#解压
tar -zxvf apache-flume-1.8.0-bin.tar.gz
#移到 /opt目录下
mv /home/apache-flume-1.8.0-bin /opt/flume-1.8.0
  • 修改配置文件

cd /opt/flume-1.8.0/conf
vi flume-conf.properties#添加以下内容
#命名agent各元素
agent.sources=source1
agent.channels=channel1#这里定义了三个sink,主要是为了把日志消息轮询发到这三个sink上面
#这三个sink分别又为大数据平台的flume agent
agent.sinks=sink1 sink2 sink3#source1描述
agent.sources.source1.type=exec
#agent来源, 即日志位置
agent.sources.source1.command=tail -F /usr/local/nginx/logs/dev-biwx.belle.net.cn.log
agent.sources.source1.channels=channel1#sink1描述, 用于被slave1(172.22.222.17) agent接受
agent.sinks.sink1.type=avro
agent.sinks.sink1.channel=channel1
agent.sinks.sink1.hostname=172.22.222.17
agent.sinks.sink1.port=10000
agent.sinks.sink1.connect-timeout=200000#sink2描述, 用于被slave2(172.22.222.18) agent接受
agent.sinks.sink2.type=avro
agent.sinks.sink2.channel=channel1
agent.sinks.sink2.hostname=172.22.222.18
agent.sinks.sink2.port=10000
agent.sinks.sink2.connect-timeout=200000#sink2描述, 用于被slave3(172.22.222.19) agent接受
agent.sinks.sink3.type=avro
agent.sinks.sink3.channel=channel1
agent.sinks.sink3.hostname=172.22.222.19
agent.sinks.sink3.port=10000
agent.sinks.sink3.connect-timeout=200000#定义sinkgroup,消息轮询发到这个组内的agent
agent.sinkgroups = g1
agent.sinkgroups.g1.sinks=sink1 sink2 sink3
agent.sinkgroups.g1.processor.type = load_balance
agent.sinkgroups.g1.processor.selector = round_robin#channel1描述
agent.channels.channel1.type = file
agent.channels.channel1.checkpointDir=/var/checkpoint
agent.channels.channel1.dataDirs=/var/tmp
agent.channels.channel1.capacity = 10000
agent.channels.channel1.transactionCapactiy = 100#绑定 source 和 sink 到channel中
agent.sources.source1.channels = channel1
agent.sinks.sink1.channel = channel1
agent.sinks.sink2.channel = channel1
agent.sinks.sink3.channel = channel1:wq!
  • 以上就是web端agent的配置,所有web节点配置都一样;暂时还不能启动,172.22.222.17-19端的agent还没启动;这时候启动会报错

  • 配置接收端agent配置 (基于CDH)

以上是基于CDH看到的 flume 服务实例,注意角色组要不一样

上述的配置文件都很简单,改一下ip和agent名字就好,以下为slave1例子

#Name the components on this agent
file2Kafka.sources = file2Kafka_source
file2Kafka.sinks = file2Kafka_sink
file2Kafka.channels = file2Kafka_channel# Describe/configure the source
file2Kafka.sources.file2Kafka_source.type = avro
file2Kafka.sources.file2Kafka_source.bind = 172.22.222.17
file2Kafka.sources.file2Kafka_source.port= 10000# Describe the sink, 目的地是kafka,注意主题为testnginx
file2Kafka.sinks.file2Kafka_sink.type = org.apache.flume.sink.kafka.KafkaSink
file2Kafka.sinks.file2Kafka_sink.kafka.topic = testnginx
file2Kafka.sinks.file2Kafka_sink.kafka.bootstrap.servers = 172.22.222.17:9092,172.22.222.18:9092,172.22.222.20:9092
file2Kafka.sinks.file2Kafka_sink.kafka.flumeBatchSize = 20# Use a channel which buffers events in memory
file2Kafka.channels.file2Kafka_channel.type = memory
file2Kafka.channels.file2Kafka_channel.capacity =100000
file2Kafka.channels.file2Kafka_channel.dataDirs=10000# Bind the source and sink to the channel
file2Kafka.sources.file2Kafka_source.channels = file2Kafka_channel
file2Kafka.sources.file2Kafka_source2.channels = file2Kafka_channel
file2Kafka.sources.file2Kafka_source3.channels = file2Kafka_channel
file2Kafka.sinks.file2Kafka_sink.channel = file2Kafka_channel
  • 配置好,CDH启动flume服务,务必进入每个agent节点的日志目录查看日志,就算某个agent节点报错,CM界面也不会有提示

#以slave1为例子
cd /var/log/flume-ng
tailf flume-cmf-flume-AGENT-bi-slave1.log

假如是以下信息代表正常启动


启动正常后,启动web端agent

./flume-ng agent --conf ../conf -f ../conf/flume-conf.properties --name agent -Dflume.root.logger=INFO,console
  • web端agent和CDH端agent都启动成功后,我们开始测试下

  • 启动kafka模拟消费端

#在kafka所在broker机器中执行命令
./kafka-console-consumer.sh --bootstrap-server 172.22.222.20:9092,172.22.222.17:9092,172.22.222.18:9092 --topic testnginx --from-beginning
  • 在所在web服务前端页面操作


这时候在kafka就能看到用户点击行为,也正是nginx记录的内容
不断点击,kafka模拟消费端就能不断看到消息进来。

欢迎点赞+收藏+转发朋友圈素质三连

文章不错?点个【在看】吧! ????

这篇关于基于实际业务场景下的Flume部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143062

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

利用Python操作Word文档页码的实际应用

《利用Python操作Word文档页码的实际应用》在撰写长篇文档时,经常需要将文档分成多个节,每个节都需要单独的页码,下面:本文主要介绍利用Python操作Word文档页码的相关资料,文中通过代码... 目录需求:文档详情:要求:该程序的功能是:总结需求:一次性处理24个文档的页码。文档详情:1、每个

vue监听属性watch的用法及使用场景详解

《vue监听属性watch的用法及使用场景详解》watch是vue中常用的监听器,它主要用于侦听数据的变化,在数据发生变化的时候执行一些操作,:本文主要介绍vue监听属性watch的用法及使用场景... 目录1. 监听属性 watch2. 常规用法3. 监听对象和route变化4. 使用场景附Watch 的

Java 缓存框架 Caffeine 应用场景解析

《Java缓存框架Caffeine应用场景解析》文章介绍Caffeine作为高性能Java本地缓存框架,基于W-TinyLFU算法,支持异步加载、灵活过期策略、内存安全机制及统计监控,重点解析其... 目录一、Caffeine 简介1. 框架概述1.1 Caffeine的核心优势二、Caffeine 基础2

linux部署NFS和autofs自动挂载实现过程

《linux部署NFS和autofs自动挂载实现过程》文章介绍了NFS(网络文件系统)和Autofs的原理与配置,NFS通过RPC实现跨系统文件共享,需配置/etc/exports和nfs.conf,... 目录(一)NFS1. 什么是NFS2.NFS守护进程3.RPC服务4. 原理5. 部署5.1安装NF

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi