SparseDrive - 清华地平线开源的e2e的框架

2024-09-06 19:20

本文主要是介绍SparseDrive - 清华地平线开源的e2e的框架,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

清华地平线合作开发的e2e的框架

SparseDrive资源
论文 https://arxiv.org/pdf/2405.19620
git https://github.com/swc-17/SparseDrive

个人觉得该文章厉害的地方

  1. 纯sparse mapping, 3d detection方案, 用的检测头sparse4D V3 sparsev1v2v3基本一致,map也是稀疏检测。这对落地的可能性大大提升。
  2. 使用两阶段实现了e2e,第一阶段mapping和3d detection的训练,第二阶段固定mapping和3d detection对planning和motion prediction训练。 这解决收敛难得问题,虽然分了两步,但是是比较实际得方案。

之前只关注了obstacle得部分,和个人得工作内容有关,最近看它得map实现也是基于sparse实现得,觉得还挺神奇得,看了它得消融实验和maptr比还是掉点得。58.7降低到56.2。 sparse得细节内容看 sparsev1v2v3

SparseDrive

整体结构

在这里插入图片描述

整体的SparseDrive的框架结构包含image encoder, symmetric sparse perception and parallel motion planner

  • image encoder:包含backbone和neck;
  • symmetric sparse perception module:特征图 I 由两组实例组成。这两组实例分别代表周围的obstacle和map,然后被输入到并行motion planner中,与初始化的自车实例进行交互。
  • motion planner:同时预测周围obstacle和自车的轨迹,并通过分层规划选择策略选择一条安全的轨迹作为最终的规划结果。

Symmetric Sparse Perception

代码实现内容: map和detection都有个InstanceBank
  • get: 拿anchor,feature,cached_feature,cached_anchor,time_interval
  • update: reffine后根据cls得分update anchor和feature
  • Cache: 该bs结束后,cache topk(confidence, self.num_temp_instances, instance_feature, anchor)
  • get_instance_id
  • update_instance_id
    MotionPlanning中有一个InstanceQueue来负责管理map和detection的结果的储存
  • get:输入detection的检测结果和map的mask以及feature等,
    • prepare_motion:使用detection结果对instance_feature_queue,anchor_queue更新
    • prepare_planning:使用feature_maps,map的mask对ego_feature_queue,ego_anchor_queue,ego_period进行更新
    • 融合temperal信息输出ego_feature, ego_anchor, temp_instance_feature, temp_anchor, temp_mask也就是planning的输入
  • cache_motion
  • cache_planning
anchor的理解

针对这个模块,是sparse头得基础实现,是由6层这样的模块重复实现而生,每次都在更新anchor和feature来获得最终得feature和anchor。bs是batch size.

  • 3d anchor: bs * 900 * 11 表征方式 [x,y,z,w,h,l,yaw,vx,vy,vz] (vcs坐标系)
    • 900 是3D的num query的数目
    • 11是代表一个3D检测框的属性,中心点,长宽高,角度,3个维度的速度
  • map anchor: bs * instance num * sample num * 2 (vcs坐标系) => reshape成 bs* [ instance num * sample num] * 2
    • instance num 最大instance的数目
    • sample num 每个instance采样的点
    • 2点的x,y坐标系
      在这里插入图片描述
      anchor会经过投影获得图像上的点在deformable aggregation在feature上进行采样,获得2D和3D的链接,这deformable aggregation这个方案的最重要理解的地方。

Parallel Motion Planner

  • Ego Instance Initialization: 对于ego feature Fe使用前视相机的最小featuremap进行初始化;对于ego anchor Be和车辆差不多一致初始化
  • Spatial-Temporal Interactions:由于自车实例在初始化时没有时间信息,而时间对于规划非常重要,设计了一个的实例记忆队列进行时间建模,H是4存储帧的数量。自车实例与周围的参与者进行拼接,以获得参与者级别的实例
    在这里插入图片描述
    下图是周围物体和自车的轨迹预测和对应得分:
    在这里插入图片描述

Km是Kp是运动预测和规划的模式数量,Tm 和 Tp 是运动预测和规划的未来时间戳数量,Ncmd 是规划的驾驶命令数量。

End-to-End Learning

  • 分阶段训练
    • stage1 从头开始训练对称稀疏感知模块,以学习稀疏场景表示;
    • stage2 稀疏感知模块和并行motion planer一起训练,没有冻结模型权重,充分利用端到端优化的优势。
  • Loss Functions: det+map+motion+plan+depth

消融实验

Backbone SparseDrive-S ResNet50 image size is 256×704. SparseDrive-B, ResNet101 512×1408
3D detection:49.6% mAP and 58.8% NDS;
multi-object tracking:50.1% AMOTA, ID switch of 632
online mapping: mAP of 56.2%
motion prediction: minADE 0.60 EPA↑ 0.555
planning: L2↓ 1s 0.29m; 3s 0.91m; Col. Rate(碰撞率)↓ 1s 0.01 3s 0.13
在这里插入图片描述

这篇关于SparseDrive - 清华地平线开源的e2e的框架的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142891

相关文章

C++ HTTP框架推荐(特点及优势)

《C++HTTP框架推荐(特点及优势)》:本文主要介绍C++HTTP框架推荐的相关资料,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Crow2. Drogon3. Pistache4. cpp-httplib5. Beast (Boos

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2

Spring框架中@Lazy延迟加载原理和使用详解

《Spring框架中@Lazy延迟加载原理和使用详解》:本文主要介绍Spring框架中@Lazy延迟加载原理和使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、@Lazy延迟加载原理1.延迟加载原理1.1 @Lazy三种配置方法1.2 @Component

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python GUI框架中的PyQt详解

《PythonGUI框架中的PyQt详解》PyQt是Python语言中最强大且广泛应用的GUI框架之一,基于Qt库的Python绑定实现,本文将深入解析PyQt的核心模块,并通过代码示例展示其应用场... 目录一、PyQt核心模块概览二、核心模块详解与示例1. QtCore - 核心基础模块2. QtWid

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统

Python结合Flask框架构建一个简易的远程控制系统

《Python结合Flask框架构建一个简易的远程控制系统》这篇文章主要为大家详细介绍了如何使用Python与Flask框架构建一个简易的远程控制系统,能够远程执行操作命令(如关机、重启、锁屏等),还... 目录1.概述2.功能使用系统命令执行实时屏幕监控3. BUG修复过程1. Authorization

无需邀请码!Manus复刻开源版OpenManus下载安装与体验

《无需邀请码!Manus复刻开源版OpenManus下载安装与体验》Manus的完美复刻开源版OpenManus安装与体验,无需邀请码,手把手教你如何在本地安装与配置Manus的开源版OpenManu... Manus是什么?Manus 是 Monica 团队推出的全球首款通用型 AI Agent。Man

SpringBoot集成图片验证码框架easy-captcha的详细过程

《SpringBoot集成图片验证码框架easy-captcha的详细过程》本文介绍了如何将Easy-Captcha框架集成到SpringBoot项目中,实现图片验证码功能,Easy-Captcha是... 目录SpringBoot集成图片验证码框架easy-captcha一、引言二、依赖三、代码1. Ea