Kafka 为了避免 Full GC,竟然还在发送端设计了内存池,自己管理内存,太巧妙了...

2024-09-06 19:18

本文主要是介绍Kafka 为了避免 Full GC,竟然还在发送端设计了内存池,自己管理内存,太巧妙了...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、开篇引出一个 Full Gc 的问题

在上一篇文章中,我们讲到了 Kafka 发送消息的八个流程,并且着重讲了 Kafka 封装了一个内存结构,把每个分区的消息封装成批次,缓存到内存里。

如下图所示:

上图中,整体是一个 Map 结构,Map 的 key 是分区,Map 的值是一个队列;队列里有一个个的小批次,里面是很多消息。

这样好处就是可以一次性的把消息发送出去,不至于来一条发送一条,浪费网络资源。

但由此也带来了问题,生产者端消息这么多,一个批次发送完了就不管了去等待 JVM 的垃圾回收的时候,很有可能会触发 full gc。

一次 full gc,整个 Producer 端的所有线程就都停了,所有消息都无法发送了,由此带来的损耗也是不可小觑。

这个严重的问题,当然 Kafka 的开发者也考虑到了这一点,所以作者设计了一个内存池,用来反复利用被发送出去 RecordBatch,以减少 full gc。

二、什么是内存池

可以类比连接池,连接池缓存了很多 jdbc 连接,避免不必要的创建连接的开销;内存池也一样,可以对 RecordBatch 做到反复利用。

那我们看看 Kafka 内存池是怎么设计的:

Kafka 内存设计有两部分,下面的绿色的是可用的内存(未分配的内存,初始的时候是 32M),上面红色的是已经被分配了的内存,每个小 batch 是 16K,然后这一个个的 batch 就可以被反复利用,不需要每次都申请内存。

两部分加起来是 32M。

这个 32M 的配置在 ProducerConfig 这个类里面:

三、申请内存的过程

(发送消息的流程在上一篇文章讲过了,可以回去复习下)

我们从发送消息的大流程的第七步开始看(当前位置:KafkaProducer):

进入到 RecordAccumulator 类里,当发现还没有队列的时候,创建了一个队列,然后去申请内存(当前类位置:RecordAccumulator):

本次我们主要看的就是这个 allocate 方法。点到 allocate 里面,到了 BufferPool 类,BufferPool 是对内存池的封装。然后来一行行看这个申请内存的方法。

(1)如果申请的内存大小超过了整个缓存池的大小,则抛错出来

(2)对整个方法加锁:

this.lock.lock();

(3)如果申请的大小是每个 recordBatch 的大小(16K),并且已分配内存不为空,则直接取出来一个返回。

if (size == poolableSize && !this.free.isEmpty())return this.free.pollFirst();

(4)如果要申请的内存大小不是 16K 或者已分配内存没有了的情况。

如果整个内存池大小比要申请的内存大小大 (this.availableMemory + freeListSize >= size),则直接从可用内存(即上图绿色的区域)申请一块内存。

并且可用内存要去掉申请的那一块内存。

int freeListSize = this.free.size() * this.poolableSize;
if (this.availableMemory + freeListSize >= size) {// we have enough unallocated or pooled memory to immediately// satisfy the requestfreeUp(size);this.availableMemory -= size;lock.unlock();return ByteBuffer.allocate(size);
}

(5)下面是 else 分支,表示申请的内存大小不是 16 K,或者已分配内存区域没有,并且所有的内存加起来都不够了。

首先创建一个 Condition。Condition 就是用来替代传统的 Object 的 wait() 和 notify() 方法来实现线程间的协作。Condition 必须在 lock 和 unlock 代码块中间才可使用。

Condition moreMemory = this.lock.newCondition();

将 Condition 加入到 waiters 里面。为什么会有多个 Condition 呢?因为这里可能很多个线程都在使用生产者发送消息,可能很多个线程都没有足够的内存分配了,都在等待。

this.waiters.addLast(moreMemory);

然后线程开始睡眠,等待释放资源(唤醒条件有两个,一个是睡眠时间到了,一个是有其他线程释放了内存,被唤醒了):

(7)如果等了指定时间(默认配置是 60s - 获取元数据的时间),还没被唤醒,则直接抛一个缓存超时的异常出去

if (waitingTimeElapsed) {this.waiters.remove(moreMemory);throw new TimeoutException("Failed to allocate memory within the configured max blocking time " + maxTimeToBlockMs + " ms.");
}

(8)如果有其他线程释放内存,被唤醒了,从 waiters 列表里面移除自己,然后去看看有没有内存可以用。

这里仍然有两个分支,一个是首先看已分配内存里面有没有内存(16K),如果有的话,直接拿一个 batch 出来

if (accumulated == 0 && size == this.poolableSize && !this.free.isEmpty()) {// just grab a buffer from the free listbuffer = this.free.pollFirst();accumulated = size;
}

另一个分支是,如果要申请的不是 16K,或者已分配内存空间不是空的

// 从已分配内存取一个出来放到可用内存区域
freeUp(size - accumulated);
// 申请一块,有可能只能申请到2K
int got = (int) Math.min(size - accumulated, this.availableMemory);
// 做扣减
this.availableMemory -= got;
accumulated += got;

有可能这里只能申请到一部分内存,比如3K,5K,没有达到想申请的那个数量,则会继续走 while 循环。

(9)最后发现内存有富余,则唤醒其他线程

if (this.availableMemory > 0 || !this.free.isEmpty()) {if (!this.waiters.isEmpty())this.waiters.peekFirst().signal();
}

四、释放内存的过程

释放内存的过程很简单了,如果释放的是一个批次的大小(16K),则直接加到已分配内存里面

如果没有,则把内存放到可用内存里面,这部分内存等待虚拟机垃圾回收。

public void deallocate(ByteBuffer buffer, int size) {lock.lock();try {if (size == this.poolableSize && size == buffer.capacity()) {buffer.clear();this.free.add(buffer);} else {this.availableMemory += size;}Condition moreMem = this.waiters.peekFirst();if (moreMem != null)moreMem.signal();} finally {lock.unlock();}
}

这里可能会有一个疑问:

为什么释放了一个批次大小(16K)内存的时候,才放到已分配内存里面。我想释放个 1M 的内存,为什么不能往已分配内存里面呢?

假设我们往已分配内存里释放了个 1M 的批次到内存里。

然后发送消息其实是有条件的,要么是许多消息把批次撑满了发送出去,要么是一个批次累积消息的时间到了,就会立马发出去。

如果是一个 1M 的内存批次,才攒了几条消息,一个批次才用了 几十K,时间到了,就把这个 1M 的内存批次发送出去了。

那么可想而知,内存的使用率是会非常低的。

所以这里控制了,已分配内存必须是 16K 的,每个批次的大小必须一致,这样才能充分利用内存空间。

五、总结

本文我们讨论了 Kafka 生产者端设计了一个内存池的结构,反复利用每一个批次,减少 Java 虚拟机的内存回收。

本文中,还涉及到了一个高并发锁的代码,比如 可重入锁 ReentrantLock,Condition,如果有不明白的地方,可以把这部分复习一下,再看这段代码就很容易明白了。

这篇关于Kafka 为了避免 Full GC,竟然还在发送端设计了内存池,自己管理内存,太巧妙了...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142884

相关文章

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他

Java发送SNMP至交换机获取交换机状态实现方式

《Java发送SNMP至交换机获取交换机状态实现方式》文章介绍使用SNMP4J库(2.7.0)通过RCF1213-MIB协议获取交换机单/多路状态,需开启SNMP支持,重点对比SNMPv1、v2c、v... 目录交换机协议SNMP库获取交换机单路状态获取交换机多路状态总结交换机协议这里使用的交换机协议为常

Python内存管理机制之垃圾回收与引用计数操作全过程

《Python内存管理机制之垃圾回收与引用计数操作全过程》SQLAlchemy是Python中最流行的ORM(对象关系映射)框架之一,它提供了高效且灵活的数据库操作方式,本文将介绍如何使用SQLAlc... 目录安装核心概念连接数据库定义数据模型创建数据库表基本CRUD操作创建数据读取数据更新数据删除数据查

在Node.js中使用.env文件管理环境变量的全过程

《在Node.js中使用.env文件管理环境变量的全过程》Node.js应用程序通常依赖于环境变量来管理敏感信息或配置设置,.env文件已经成为一种流行的本地管理这些变量的方法,本文将探讨.env文件... 目录引言为什么使php用 .env 文件 ?如何在 Node.js 中使用 .env 文件最佳实践引

Python异常处理之避免try-except滥用的3个核心原则

《Python异常处理之避免try-except滥用的3个核心原则》在Python开发中,异常处理是保证程序健壮性的关键机制,本文结合真实案例与Python核心机制,提炼出避免异常滥用的三大原则,有需... 目录一、精准打击:只捕获可预见的异常类型1.1 通用异常捕获的陷阱1.2 精准捕获的实践方案1.3

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

k8s容器放开锁内存限制问题

《k8s容器放开锁内存限制问题》nccl-test容器运行mpirun时因NCCL_BUFFSIZE过大导致OOM,需通过修改docker服务配置文件,将LimitMEMLOCK设为infinity并... 目录问题问题确认放开容器max locked memory限制总结参考:https://Access

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Java Kafka消费者实现过程

《JavaKafka消费者实现过程》Kafka消费者通过KafkaConsumer类实现,核心机制包括偏移量管理、消费者组协调、批量拉取消息及多线程处理,手动提交offset确保数据可靠性,自动提交... 目录基础KafkaConsumer类分析关键代码与核心算法2.1 订阅与分区分配2.2 拉取消息2.3