常见链表的设计

2024-09-06 19:12
文章标签 设计 常见 链表

本文主要是介绍常见链表的设计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

链表是非常常见的一种数据结构,尤其是在一些操作系统中。
链表常见的操作有插入节点、删除节点、访问节点等。
本文实现了单向链表、双向链表的设计,并提供了可直接运行的C++代码,此外还说明了使用C语言在实现上的差异

本文所使用的图取自代码随想录

链表类型

  • 单链表

    image-20240905164200397
  • 双向链表

    image-20240905164239651
  • 循环链表

    image-20240905164300885

链表的存储方式

各个节点分布在内存的不同地址空间上,通过指针串联在一起

单链表的定义

struct ListNode {int val;  // 节点上存储的元素ListNode *next;  // 指向下一个节点的指针ListNode(int x) : val(x), next(NULL) {}  // 节点的构造函数
};

链表的操作

  • 删除节点

    image-20240905164922557
  • 添加节点

    image-20240905164951835

与数组对比

插入/删除(时间复杂度)查询(时间复杂度)使用场景
数组O(n)O(1)数据量固定,频繁查询,较少增删
链表O(1)O(n)数据量不固定,频繁增删,较少查询


移除链表元素

struct node {int value;node *next;node(int x) : value(x), next(nullptr) {}
};node *removeElement(node *head, int val){node *dummyHead = new node(0);dummyHead->next = head;node *cur = dummyHead;while(cur->next != NULL){if(cur->next->value == val){node *tmp = cur->next;cur->next = cur->next->next;delete tmp;}else{cur = cur->next;}}head = dummyHead->next;delete dummyHead;return head;
}

链表设计

class MyList{    
public:struct node{int value;node *next;node(int initValue):value(initValue), next(nullptr){}};    MyList(){_dummyHead = new node(0);_size = 0;}// 获取第index个结点的数值int get(int index){if(index > (_size-1) || index < 0){// throw out_of_range("index out of range!");cout << "index out of range!————return INT32_MAX = " << INT32_MAX << endl;return INT32_MAX;}node *cur = _dummyHead->next;while(index){cur = cur->next;index--;}return cur->value;}// 在链表最前面插入一个节点void addAtHead(int value){node *newNode = new node(value);newNode->next = _dummyHead->next;_dummyHead->next = newNode;_size++;}// 在链表最后面插入一个元素void addAtTail(int value){node *newNode = new node(value);        node *cur = _dummyHead;while(cur->next != nullptr){cur = cur->next;}cur->next = newNode;_size++;}// 在第index个节点之前插入一个节点void addAtIndex(int index, int value){if(index > _size){return;}if(index < 0){index = 0;}node *newNode = new node(value);node *cur = _dummyHead;while(index != 0){cur = cur->next;index--;}newNode->next = cur->next;cur->next = newNode;_size++;}// 删除第index个节点void deleteAtIndex(int index){if(index < 0 || index >= _size){return;}node *cur = _dummyHead;while(index != 0){cur = cur->next;index--;}node *tmp = cur->next;cur->next = cur->next->next;delete tmp;tmp = nullptr;_size--;}// 打印链表void printList(){node *cur = _dummyHead;while(cur->next != nullptr){cout << cur->next->value;cur = cur->next;if(cur->next){cout << "->";}}cout << endl;}private:int _size;node *_dummyHead;    
};

单独实现插入节点

struct node{int value;node *next;node(int initValue):value(initValue), next(nullptr){}
};
void addAtIndex(node *&head, int index, int value){node *dummyHead = new node(0);dummyHead->next = head;node *cur = dummyHead;int size = 0;    while(cur->next != nullptr){size++;cur = cur->next;}if(index < 0){index = 0;}if(index > size){delete dummyHead;cout << "index is invalid" << endl;return;}cur = dummyHead;while(index){cur = cur->next;index--;}node *newNode = new node(value);newNode->next = cur->next;cur->next = newNode;size++;head = dummyHead->next;delete dummyHead;
}

使用C语言实现,与C++基本一致,只不过我们要自己定义结点的创建函数,并且new/delete要对应转换为malloc/free

typedef struct node{int value;struct node *next;
}node;node *createNode(int value){node *newNode = (node *)malloc(sizeof(struct node));newNode->value = value;newNode->next = NULL;return newNode;
}void addAtIndex(node **head, int index, int value){node *dummyHead = createNode(0);dummyHead->next = *head;int size = 0;node *cur = dummyHead;while(cur->next != NULL){cur = cur->next;size++;}if(index < 0)index=0;if(index > size){free(dummyHead);    return;}cur = dummyHead;while(index){cur = cur->next;index--;}node *newNode = createNode(value);newNode->next = cur->next;cur->next = newNode;*head = dummyHead->next;free(dummyHead);
}

双向链表设计

class MyDualList{    
public:struct node{int value;node *next;node *prev;node(int initValue):value(initValue), next(nullptr), prev(nullptr){}};MyDualList(){_dummyHead = new node(0);_dummyTail = new node(0);_size = 0;_dummyHead->next = _dummyTail;_dummyTail->prev = _dummyHead;}int get(int index){if(index < 0 || index >= _size){return -1;}node *cur = _dummyHead->next;while(index){cur = cur->next;index--;}return cur->value;}void addAtHead(int value){node *newNode = new node(value);newNode->next = _dummyHead->next;_dummyHead->next->prev = newNode; // 跟单链表一致,只是在指针换向时多考虑一个prev指针_dummyHead->next = newNode;newNode->prev = _dummyHead; //_size++;}void addAtTail(int value){node *newNode = new node(value);// 这里设计的双向链表,与单向链表相比,末尾节点会指向_dummyTail,基于此可以像单向链表一样写// 不过从另一个角度来说,我们的尾插可以看作在_dummyTail之前插入一个节点_dummyTail->prev->next = newNode;newNode->prev = _dummyTail->prev;newNode->next = _dummyTail;_dummyTail->prev = newNode;_size++;}void addAtIndex(int index, int value){if(index < 0)index=0;if(index > _size)return;node *cur = _dummyHead;while(index){cur = cur->next;index--;}node *newNode = new node(value);newNode->next = cur->next;cur->next->prev = newNode;cur->next = newNode;newNode->prev = cur;_size++;}void deleteAtIndex(int index){if(index < 0 || index >= _size)return;node *cur = _dummyHead;while(index){cur = cur->next;index--;}node *tmp = cur->next;cur->next = cur->next->next;cur->next->prev = cur;delete tmp;_size--;}void printListForward(){node *cur = _dummyHead;while(cur->next != _dummyTail){cout << cur->next->value;cur = cur->next;if(cur->next != _dummyTail){cout << "->";}}cout << endl;}void printListReverse(){node *cur = _dummyTail;while(cur->prev != _dummyHead){cout << cur->prev->value;cur = cur->prev;if(cur->prev != _dummyHead){cout << "<-";}}cout << endl;}    
private:int _size = 0;node *_dummyHead, *_dummyTail;    
};



测试部分

  • 函数测试——添加与移除链表元素

    /* C++ */
    #include<iostream>
    using namespace std;struct node {int value;node *next;node(int x) : value(x), next(NULL) {}
    };void printList(node *head){node *dummyHead = new node(0);dummyHead->next = head;node *cur = dummyHead;while(cur->next){cout << cur->next->value;cur = cur->next;if(cur->next){cout << "->";}}cout << endl;
    }void removeElement(node *&head, int val){node *dummyHead = new node(0);dummyHead->next = head;node *cur = dummyHead;while(cur->next != NULL){if(cur->next->value == val){node *tmp = cur->next;cur->next = cur->next->next;delete tmp;}else{cur = cur->next;}}head = dummyHead->next;delete dummyHead;
    }void addAtIndex(node *&head, int index, int value){node *dummyHead = new node(0);dummyHead->next = head;node *cur = dummyHead;int size = 0;    while(cur->next != nullptr){size++;cur = cur->next;}if(index < 0){index = 0;}if(index > size){delete dummyHead;cout << "index is invalid" << endl;return;}cur = dummyHead;while(index){cur = cur->next;index--;}node *newNode = new node(value);newNode->next = cur->next;cur->next = newNode;size++;head = dummyHead->next;delete dummyHead;dummyHead = nullptr;
    }int main(void){node *head = new node(0);addAtIndex(head, 1, 1);addAtIndex(head, 2, 2);addAtIndex(head, 3, 3);addAtIndex(head, 4, 4);addAtIndex(head, 5, 5);cout << "the LinkedList is:" << endl;printList(head);removeElement(head, 2);printList(head);return 0;
    }
    

image-20240906163301527

/* C */
#include<stdio.h>
#include<stdlib.h>typedef struct node{int value;struct node *next;
}node;node *createNode(int value){node *newNode = (node *)malloc(sizeof(struct node));newNode->value = value;newNode->next = NULL;return newNode;
}void printList(node *head){node *dummyHead = createNode(0);dummyHead->next = head;node *cur = dummyHead;while(cur->next){printf("%d", cur->next->value);cur = cur->next;if(cur->next){printf("->");}}printf("\n");
}void addAtIndex(node **head, int index, int value){node *dummyHead = createNode(0);dummyHead->next = *head;int size = 0;node *cur = dummyHead;while(cur->next != NULL){cur = cur->next;size++;}if(index < 0)index=0;if(index > size){free(dummyHead);    return;}cur = dummyHead;while(index){cur = cur->next;index--;}node *newNode = createNode(value);newNode->next = cur->next;cur->next = newNode;*head = dummyHead->next;free(dummyHead);
}void removeElement(node **head, int val){node *dummyHead = createNode(0);dummyHead->next = *head;node *cur = dummyHead;while(cur->next != NULL){if(cur->next->value == val){node *tmp = cur->next;cur->next = cur->next->next;free(tmp);}else{cur = cur->next;}}*head = dummyHead->next;free(dummyHead);
}int main(void){node *head = createNode(0);addAtIndex(&head, 1, 1);addAtIndex(&head, 2, 2);addAtIndex(&head, 3, 3);addAtIndex(&head, 4, 4);addAtIndex(&head, 5, 5);printf("the LinkedList is:\n");printList(head);removeElement(&head, 0);printList(head);return 0;
}

image-20240906163424875

  • 链表设计测试

    #include<iostream>
    using namespace std;class MyList{    
    public:struct node{int value;node *next;node(int initValue):value(initValue), next(nullptr){}};    MyList(){_dummyHead = new node(0);_size = 0;}// 获取第index个结点的数值int get(int index){if(index > (_size-1) || index < 0){// throw out_of_range("index out of range!");cout << "index out of range!————return INT32_MAX = " << INT32_MAX << endl;return INT32_MAX;}node *cur = _dummyHead->next;while(index){cur = cur->next;index--;}return cur->value;}// 在链表最前面插入一个节点void addAtHead(int value){node *newNode = new node(value);newNode->next = _dummyHead->next;_dummyHead->next = newNode;_size++;}// 在链表最后面插入一个元素void addAtTail(int value){node *newNode = new node(value);        node *cur = _dummyHead;while(cur->next != nullptr){cur = cur->next;}cur->next = newNode;_size++;}// 在第index个节点之前插入一个节点void addAtIndex(int index, int value){if(index > _size){return;}if(index < 0){index = 0;}node *newNode = new node(value);node *cur = _dummyHead;while(index != 0){cur = cur->next;index--;}newNode->next = cur->next;cur->next = newNode;_size++;}// 删除第index个节点void deleteAtIndex(int index){if(index < 0 || index >= _size){return;}node *cur = _dummyHead;while(index != 0){cur = cur->next;index--;}node *tmp = cur->next;cur->next = cur->next->next;delete tmp;tmp = nullptr;_size--;}// 打印链表void printList(){node *cur = _dummyHead;while(cur->next != nullptr){cout << cur->next->value;cur = cur->next;if(cur->next){cout << "->";}}cout << endl;}private:int _size;node *_dummyHead;    
    };int main(){MyList list;list.addAtIndex(0,0);list.addAtIndex(1,1);list.addAtIndex(2,2);list.addAtIndex(3,3);list.addAtIndex(4,3);list.addAtIndex(5,4);list.printList();list.deleteAtIndex(3);list.printList();cout << list.get(1) << endl;return 0;
    }
    

image-20240906163634682

  • 双向链表设计测试

    #include<iostream>
    using namespace std;class MyDualList{    
    public:struct node{int value;node *next;node *prev;node(int initValue):value(initValue), next(nullptr), prev(nullptr){}};MyDualList(){_dummyHead = new node(0);_dummyTail = new node(0);_size = 0;_dummyHead->next = _dummyTail;_dummyTail->prev = _dummyHead;}int get(int index){if(index < 0 || index >= _size){return -1;}node *cur = _dummyHead->next;while(index){cur = cur->next;index--;}return cur->value;}void addAtHead(int value){node *newNode = new node(value);newNode->next = _dummyHead->next;_dummyHead->next->prev = newNode; // 跟单链表一致,只是在指针换向时多考虑一个prev指针_dummyHead->next = newNode;newNode->prev = _dummyHead; //_size++;}void addAtTail(int value){node *newNode = new node(value);// 这里设计的双向链表,与单向链表相比,末尾节点会指向_dummyTail,基于此可以像单向链表一样写// 不过从另一个角度来说,我们的尾插可以看作在_dummyTail之前插入一个节点_dummyTail->prev->next = newNode;newNode->prev = _dummyTail->prev;newNode->next = _dummyTail;_dummyTail->prev = newNode;_size++;}void addAtIndex(int index, int value){if(index < 0)index=0;if(index > _size)return;node *cur = _dummyHead;while(index){cur = cur->next;index--;}node *newNode = new node(value);newNode->next = cur->next;cur->next->prev = newNode;cur->next = newNode;newNode->prev = cur;_size++;}void deleteAtIndex(int index){if(index < 0 || index >= _size)return;node *cur = _dummyHead;while(index){cur = cur->next;index--;}node *tmp = cur->next;cur->next = cur->next->next;cur->next->prev = cur;delete tmp;_size--;}void printListForward(){node *cur = _dummyHead;while(cur->next != _dummyTail){cout << cur->next->value;cur = cur->next;if(cur->next != _dummyTail){cout << "->";}}cout << endl;}void printListReverse(){node *cur = _dummyTail;while(cur->prev != _dummyHead){cout << cur->prev->value;cur = cur->prev;if(cur->prev != _dummyHead){cout << "<-";}}cout << endl;}    
    private:int _size = 0;node *_dummyHead, *_dummyTail;    
    };int main(){MyDualList list;list.addAtIndex(0,0);list.addAtIndex(1,1);list.addAtIndex(2,2);list.addAtIndex(3,3);list.addAtIndex(4,3);list.addAtIndex(5,4);list.addAtTail(60);list.printListForward();list.printListReverse();list.deleteAtIndex(3);list.printListForward();list.printListReverse();cout << list.get(1) << endl;return 0;
    }
    

image-20240906163742188

这篇关于常见链表的设计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142876

相关文章

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java集合中的链表与结构详解

《Java集合中的链表与结构详解》链表是一种物理存储结构上非连续的存储结构,数据元素的逻辑顺序的通过链表中的引用链接次序实现,文章对比ArrayList与LinkedList的结构差异,详细讲解了链表... 目录一、链表概念与结构二、当向单链表的实现2.1 准备工作2.2 初始化链表2.3 打印数据、链表长

MySQL ORDER BY 语句常见用法、示例详解

《MySQLORDERBY语句常见用法、示例详解》ORDERBY是结构化查询语言(SQL)中的关键字,隶属于SELECT语句的子句结构,用于对查询结果集按指定列进行排序,本文给大家介绍MySQL... 目录mysql ORDER BY 语句详细说明1.基本语法2.排序方向详解3.多列排序4.常见用法示例5.

MySQL 索引简介及常见的索引类型有哪些

《MySQL索引简介及常见的索引类型有哪些》MySQL索引是加速数据检索的特殊结构,用于存储列值与位置信息,常见的索引类型包括:主键索引、唯一索引、普通索引、复合索引、全文索引和空间索引等,本文介绍... 目录什么是 mysql 的索引?常见的索引类型有哪些?总结性回答详细解释1. MySQL 索引的概念2

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字