常见链表的设计

2024-09-06 19:12
文章标签 设计 常见 链表

本文主要是介绍常见链表的设计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

链表是非常常见的一种数据结构,尤其是在一些操作系统中。
链表常见的操作有插入节点、删除节点、访问节点等。
本文实现了单向链表、双向链表的设计,并提供了可直接运行的C++代码,此外还说明了使用C语言在实现上的差异

本文所使用的图取自代码随想录

链表类型

  • 单链表

    image-20240905164200397
  • 双向链表

    image-20240905164239651
  • 循环链表

    image-20240905164300885

链表的存储方式

各个节点分布在内存的不同地址空间上,通过指针串联在一起

单链表的定义

struct ListNode {int val;  // 节点上存储的元素ListNode *next;  // 指向下一个节点的指针ListNode(int x) : val(x), next(NULL) {}  // 节点的构造函数
};

链表的操作

  • 删除节点

    image-20240905164922557
  • 添加节点

    image-20240905164951835

与数组对比

插入/删除(时间复杂度)查询(时间复杂度)使用场景
数组O(n)O(1)数据量固定,频繁查询,较少增删
链表O(1)O(n)数据量不固定,频繁增删,较少查询


移除链表元素

struct node {int value;node *next;node(int x) : value(x), next(nullptr) {}
};node *removeElement(node *head, int val){node *dummyHead = new node(0);dummyHead->next = head;node *cur = dummyHead;while(cur->next != NULL){if(cur->next->value == val){node *tmp = cur->next;cur->next = cur->next->next;delete tmp;}else{cur = cur->next;}}head = dummyHead->next;delete dummyHead;return head;
}

链表设计

class MyList{    
public:struct node{int value;node *next;node(int initValue):value(initValue), next(nullptr){}};    MyList(){_dummyHead = new node(0);_size = 0;}// 获取第index个结点的数值int get(int index){if(index > (_size-1) || index < 0){// throw out_of_range("index out of range!");cout << "index out of range!————return INT32_MAX = " << INT32_MAX << endl;return INT32_MAX;}node *cur = _dummyHead->next;while(index){cur = cur->next;index--;}return cur->value;}// 在链表最前面插入一个节点void addAtHead(int value){node *newNode = new node(value);newNode->next = _dummyHead->next;_dummyHead->next = newNode;_size++;}// 在链表最后面插入一个元素void addAtTail(int value){node *newNode = new node(value);        node *cur = _dummyHead;while(cur->next != nullptr){cur = cur->next;}cur->next = newNode;_size++;}// 在第index个节点之前插入一个节点void addAtIndex(int index, int value){if(index > _size){return;}if(index < 0){index = 0;}node *newNode = new node(value);node *cur = _dummyHead;while(index != 0){cur = cur->next;index--;}newNode->next = cur->next;cur->next = newNode;_size++;}// 删除第index个节点void deleteAtIndex(int index){if(index < 0 || index >= _size){return;}node *cur = _dummyHead;while(index != 0){cur = cur->next;index--;}node *tmp = cur->next;cur->next = cur->next->next;delete tmp;tmp = nullptr;_size--;}// 打印链表void printList(){node *cur = _dummyHead;while(cur->next != nullptr){cout << cur->next->value;cur = cur->next;if(cur->next){cout << "->";}}cout << endl;}private:int _size;node *_dummyHead;    
};

单独实现插入节点

struct node{int value;node *next;node(int initValue):value(initValue), next(nullptr){}
};
void addAtIndex(node *&head, int index, int value){node *dummyHead = new node(0);dummyHead->next = head;node *cur = dummyHead;int size = 0;    while(cur->next != nullptr){size++;cur = cur->next;}if(index < 0){index = 0;}if(index > size){delete dummyHead;cout << "index is invalid" << endl;return;}cur = dummyHead;while(index){cur = cur->next;index--;}node *newNode = new node(value);newNode->next = cur->next;cur->next = newNode;size++;head = dummyHead->next;delete dummyHead;
}

使用C语言实现,与C++基本一致,只不过我们要自己定义结点的创建函数,并且new/delete要对应转换为malloc/free

typedef struct node{int value;struct node *next;
}node;node *createNode(int value){node *newNode = (node *)malloc(sizeof(struct node));newNode->value = value;newNode->next = NULL;return newNode;
}void addAtIndex(node **head, int index, int value){node *dummyHead = createNode(0);dummyHead->next = *head;int size = 0;node *cur = dummyHead;while(cur->next != NULL){cur = cur->next;size++;}if(index < 0)index=0;if(index > size){free(dummyHead);    return;}cur = dummyHead;while(index){cur = cur->next;index--;}node *newNode = createNode(value);newNode->next = cur->next;cur->next = newNode;*head = dummyHead->next;free(dummyHead);
}

双向链表设计

class MyDualList{    
public:struct node{int value;node *next;node *prev;node(int initValue):value(initValue), next(nullptr), prev(nullptr){}};MyDualList(){_dummyHead = new node(0);_dummyTail = new node(0);_size = 0;_dummyHead->next = _dummyTail;_dummyTail->prev = _dummyHead;}int get(int index){if(index < 0 || index >= _size){return -1;}node *cur = _dummyHead->next;while(index){cur = cur->next;index--;}return cur->value;}void addAtHead(int value){node *newNode = new node(value);newNode->next = _dummyHead->next;_dummyHead->next->prev = newNode; // 跟单链表一致,只是在指针换向时多考虑一个prev指针_dummyHead->next = newNode;newNode->prev = _dummyHead; //_size++;}void addAtTail(int value){node *newNode = new node(value);// 这里设计的双向链表,与单向链表相比,末尾节点会指向_dummyTail,基于此可以像单向链表一样写// 不过从另一个角度来说,我们的尾插可以看作在_dummyTail之前插入一个节点_dummyTail->prev->next = newNode;newNode->prev = _dummyTail->prev;newNode->next = _dummyTail;_dummyTail->prev = newNode;_size++;}void addAtIndex(int index, int value){if(index < 0)index=0;if(index > _size)return;node *cur = _dummyHead;while(index){cur = cur->next;index--;}node *newNode = new node(value);newNode->next = cur->next;cur->next->prev = newNode;cur->next = newNode;newNode->prev = cur;_size++;}void deleteAtIndex(int index){if(index < 0 || index >= _size)return;node *cur = _dummyHead;while(index){cur = cur->next;index--;}node *tmp = cur->next;cur->next = cur->next->next;cur->next->prev = cur;delete tmp;_size--;}void printListForward(){node *cur = _dummyHead;while(cur->next != _dummyTail){cout << cur->next->value;cur = cur->next;if(cur->next != _dummyTail){cout << "->";}}cout << endl;}void printListReverse(){node *cur = _dummyTail;while(cur->prev != _dummyHead){cout << cur->prev->value;cur = cur->prev;if(cur->prev != _dummyHead){cout << "<-";}}cout << endl;}    
private:int _size = 0;node *_dummyHead, *_dummyTail;    
};



测试部分

  • 函数测试——添加与移除链表元素

    /* C++ */
    #include<iostream>
    using namespace std;struct node {int value;node *next;node(int x) : value(x), next(NULL) {}
    };void printList(node *head){node *dummyHead = new node(0);dummyHead->next = head;node *cur = dummyHead;while(cur->next){cout << cur->next->value;cur = cur->next;if(cur->next){cout << "->";}}cout << endl;
    }void removeElement(node *&head, int val){node *dummyHead = new node(0);dummyHead->next = head;node *cur = dummyHead;while(cur->next != NULL){if(cur->next->value == val){node *tmp = cur->next;cur->next = cur->next->next;delete tmp;}else{cur = cur->next;}}head = dummyHead->next;delete dummyHead;
    }void addAtIndex(node *&head, int index, int value){node *dummyHead = new node(0);dummyHead->next = head;node *cur = dummyHead;int size = 0;    while(cur->next != nullptr){size++;cur = cur->next;}if(index < 0){index = 0;}if(index > size){delete dummyHead;cout << "index is invalid" << endl;return;}cur = dummyHead;while(index){cur = cur->next;index--;}node *newNode = new node(value);newNode->next = cur->next;cur->next = newNode;size++;head = dummyHead->next;delete dummyHead;dummyHead = nullptr;
    }int main(void){node *head = new node(0);addAtIndex(head, 1, 1);addAtIndex(head, 2, 2);addAtIndex(head, 3, 3);addAtIndex(head, 4, 4);addAtIndex(head, 5, 5);cout << "the LinkedList is:" << endl;printList(head);removeElement(head, 2);printList(head);return 0;
    }
    

image-20240906163301527

/* C */
#include<stdio.h>
#include<stdlib.h>typedef struct node{int value;struct node *next;
}node;node *createNode(int value){node *newNode = (node *)malloc(sizeof(struct node));newNode->value = value;newNode->next = NULL;return newNode;
}void printList(node *head){node *dummyHead = createNode(0);dummyHead->next = head;node *cur = dummyHead;while(cur->next){printf("%d", cur->next->value);cur = cur->next;if(cur->next){printf("->");}}printf("\n");
}void addAtIndex(node **head, int index, int value){node *dummyHead = createNode(0);dummyHead->next = *head;int size = 0;node *cur = dummyHead;while(cur->next != NULL){cur = cur->next;size++;}if(index < 0)index=0;if(index > size){free(dummyHead);    return;}cur = dummyHead;while(index){cur = cur->next;index--;}node *newNode = createNode(value);newNode->next = cur->next;cur->next = newNode;*head = dummyHead->next;free(dummyHead);
}void removeElement(node **head, int val){node *dummyHead = createNode(0);dummyHead->next = *head;node *cur = dummyHead;while(cur->next != NULL){if(cur->next->value == val){node *tmp = cur->next;cur->next = cur->next->next;free(tmp);}else{cur = cur->next;}}*head = dummyHead->next;free(dummyHead);
}int main(void){node *head = createNode(0);addAtIndex(&head, 1, 1);addAtIndex(&head, 2, 2);addAtIndex(&head, 3, 3);addAtIndex(&head, 4, 4);addAtIndex(&head, 5, 5);printf("the LinkedList is:\n");printList(head);removeElement(&head, 0);printList(head);return 0;
}

image-20240906163424875

  • 链表设计测试

    #include<iostream>
    using namespace std;class MyList{    
    public:struct node{int value;node *next;node(int initValue):value(initValue), next(nullptr){}};    MyList(){_dummyHead = new node(0);_size = 0;}// 获取第index个结点的数值int get(int index){if(index > (_size-1) || index < 0){// throw out_of_range("index out of range!");cout << "index out of range!————return INT32_MAX = " << INT32_MAX << endl;return INT32_MAX;}node *cur = _dummyHead->next;while(index){cur = cur->next;index--;}return cur->value;}// 在链表最前面插入一个节点void addAtHead(int value){node *newNode = new node(value);newNode->next = _dummyHead->next;_dummyHead->next = newNode;_size++;}// 在链表最后面插入一个元素void addAtTail(int value){node *newNode = new node(value);        node *cur = _dummyHead;while(cur->next != nullptr){cur = cur->next;}cur->next = newNode;_size++;}// 在第index个节点之前插入一个节点void addAtIndex(int index, int value){if(index > _size){return;}if(index < 0){index = 0;}node *newNode = new node(value);node *cur = _dummyHead;while(index != 0){cur = cur->next;index--;}newNode->next = cur->next;cur->next = newNode;_size++;}// 删除第index个节点void deleteAtIndex(int index){if(index < 0 || index >= _size){return;}node *cur = _dummyHead;while(index != 0){cur = cur->next;index--;}node *tmp = cur->next;cur->next = cur->next->next;delete tmp;tmp = nullptr;_size--;}// 打印链表void printList(){node *cur = _dummyHead;while(cur->next != nullptr){cout << cur->next->value;cur = cur->next;if(cur->next){cout << "->";}}cout << endl;}private:int _size;node *_dummyHead;    
    };int main(){MyList list;list.addAtIndex(0,0);list.addAtIndex(1,1);list.addAtIndex(2,2);list.addAtIndex(3,3);list.addAtIndex(4,3);list.addAtIndex(5,4);list.printList();list.deleteAtIndex(3);list.printList();cout << list.get(1) << endl;return 0;
    }
    

image-20240906163634682

  • 双向链表设计测试

    #include<iostream>
    using namespace std;class MyDualList{    
    public:struct node{int value;node *next;node *prev;node(int initValue):value(initValue), next(nullptr), prev(nullptr){}};MyDualList(){_dummyHead = new node(0);_dummyTail = new node(0);_size = 0;_dummyHead->next = _dummyTail;_dummyTail->prev = _dummyHead;}int get(int index){if(index < 0 || index >= _size){return -1;}node *cur = _dummyHead->next;while(index){cur = cur->next;index--;}return cur->value;}void addAtHead(int value){node *newNode = new node(value);newNode->next = _dummyHead->next;_dummyHead->next->prev = newNode; // 跟单链表一致,只是在指针换向时多考虑一个prev指针_dummyHead->next = newNode;newNode->prev = _dummyHead; //_size++;}void addAtTail(int value){node *newNode = new node(value);// 这里设计的双向链表,与单向链表相比,末尾节点会指向_dummyTail,基于此可以像单向链表一样写// 不过从另一个角度来说,我们的尾插可以看作在_dummyTail之前插入一个节点_dummyTail->prev->next = newNode;newNode->prev = _dummyTail->prev;newNode->next = _dummyTail;_dummyTail->prev = newNode;_size++;}void addAtIndex(int index, int value){if(index < 0)index=0;if(index > _size)return;node *cur = _dummyHead;while(index){cur = cur->next;index--;}node *newNode = new node(value);newNode->next = cur->next;cur->next->prev = newNode;cur->next = newNode;newNode->prev = cur;_size++;}void deleteAtIndex(int index){if(index < 0 || index >= _size)return;node *cur = _dummyHead;while(index){cur = cur->next;index--;}node *tmp = cur->next;cur->next = cur->next->next;cur->next->prev = cur;delete tmp;_size--;}void printListForward(){node *cur = _dummyHead;while(cur->next != _dummyTail){cout << cur->next->value;cur = cur->next;if(cur->next != _dummyTail){cout << "->";}}cout << endl;}void printListReverse(){node *cur = _dummyTail;while(cur->prev != _dummyHead){cout << cur->prev->value;cur = cur->prev;if(cur->prev != _dummyHead){cout << "<-";}}cout << endl;}    
    private:int _size = 0;node *_dummyHead, *_dummyTail;    
    };int main(){MyDualList list;list.addAtIndex(0,0);list.addAtIndex(1,1);list.addAtIndex(2,2);list.addAtIndex(3,3);list.addAtIndex(4,3);list.addAtIndex(5,4);list.addAtTail(60);list.printListForward();list.printListReverse();list.deleteAtIndex(3);list.printListForward();list.printListReverse();cout << list.get(1) << endl;return 0;
    }
    

image-20240906163742188

这篇关于常见链表的设计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142876

相关文章

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

SQL中redo log 刷⼊磁盘的常见方法

《SQL中redolog刷⼊磁盘的常见方法》本文主要介绍了SQL中redolog刷⼊磁盘的常见方法,将redolog刷入磁盘的方法确保了数据的持久性和一致性,下面就来具体介绍一下,感兴趣的可以了解... 目录Redo Log 刷入磁盘的方法Redo Log 刷入磁盘的过程代码示例(伪代码)在数据库系统中,r

SQL BETWEEN 的常见用法小结

《SQLBETWEEN的常见用法小结》BETWEEN操作符是SQL中非常有用的工具,它允许你快速选取某个范围内的值,本文给大家介绍SQLBETWEEN的常见用法,感兴趣的朋友一起看看吧... 在SQL中,BETWEEN是一个操作符,用于选取介于两个值之间的数据。它包含这两个边界值。BETWEEN操作符常用

python中各种常见文件的读写操作与类型转换详细指南

《python中各种常见文件的读写操作与类型转换详细指南》这篇文章主要为大家详细介绍了python中各种常见文件(txt,xls,csv,sql,二进制文件)的读写操作与类型转换,感兴趣的小伙伴可以跟... 目录1.文件txt读写标准用法1.1写入文件1.2读取文件2. 二进制文件读取3. 大文件读取3.1

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

前端下载文件时如何后端返回的文件流一些常见方法

《前端下载文件时如何后端返回的文件流一些常见方法》:本文主要介绍前端下载文件时如何后端返回的文件流一些常见方法,包括使用Blob和URL.createObjectURL创建下载链接,以及处理带有C... 目录1. 使用 Blob 和 URL.createObjectURL 创建下载链接例子:使用 Blob

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

Pytest多环境切换的常见方法介绍

《Pytest多环境切换的常见方法介绍》Pytest作为自动化测试的主力框架,如何实现本地、测试、预发、生产环境的灵活切换,本文总结了通过pytest框架实现自由环境切换的几种方法,大家可以根据需要进... 目录1.pytest-base-url2.hooks函数3.yml和fixture结论你是否也遇到过

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO