常见链表的设计

2024-09-06 19:12
文章标签 设计 常见 链表

本文主要是介绍常见链表的设计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

链表是非常常见的一种数据结构,尤其是在一些操作系统中。
链表常见的操作有插入节点、删除节点、访问节点等。
本文实现了单向链表、双向链表的设计,并提供了可直接运行的C++代码,此外还说明了使用C语言在实现上的差异

本文所使用的图取自代码随想录

链表类型

  • 单链表

    image-20240905164200397
  • 双向链表

    image-20240905164239651
  • 循环链表

    image-20240905164300885

链表的存储方式

各个节点分布在内存的不同地址空间上,通过指针串联在一起

单链表的定义

struct ListNode {int val;  // 节点上存储的元素ListNode *next;  // 指向下一个节点的指针ListNode(int x) : val(x), next(NULL) {}  // 节点的构造函数
};

链表的操作

  • 删除节点

    image-20240905164922557
  • 添加节点

    image-20240905164951835

与数组对比

插入/删除(时间复杂度)查询(时间复杂度)使用场景
数组O(n)O(1)数据量固定,频繁查询,较少增删
链表O(1)O(n)数据量不固定,频繁增删,较少查询


移除链表元素

struct node {int value;node *next;node(int x) : value(x), next(nullptr) {}
};node *removeElement(node *head, int val){node *dummyHead = new node(0);dummyHead->next = head;node *cur = dummyHead;while(cur->next != NULL){if(cur->next->value == val){node *tmp = cur->next;cur->next = cur->next->next;delete tmp;}else{cur = cur->next;}}head = dummyHead->next;delete dummyHead;return head;
}

链表设计

class MyList{    
public:struct node{int value;node *next;node(int initValue):value(initValue), next(nullptr){}};    MyList(){_dummyHead = new node(0);_size = 0;}// 获取第index个结点的数值int get(int index){if(index > (_size-1) || index < 0){// throw out_of_range("index out of range!");cout << "index out of range!————return INT32_MAX = " << INT32_MAX << endl;return INT32_MAX;}node *cur = _dummyHead->next;while(index){cur = cur->next;index--;}return cur->value;}// 在链表最前面插入一个节点void addAtHead(int value){node *newNode = new node(value);newNode->next = _dummyHead->next;_dummyHead->next = newNode;_size++;}// 在链表最后面插入一个元素void addAtTail(int value){node *newNode = new node(value);        node *cur = _dummyHead;while(cur->next != nullptr){cur = cur->next;}cur->next = newNode;_size++;}// 在第index个节点之前插入一个节点void addAtIndex(int index, int value){if(index > _size){return;}if(index < 0){index = 0;}node *newNode = new node(value);node *cur = _dummyHead;while(index != 0){cur = cur->next;index--;}newNode->next = cur->next;cur->next = newNode;_size++;}// 删除第index个节点void deleteAtIndex(int index){if(index < 0 || index >= _size){return;}node *cur = _dummyHead;while(index != 0){cur = cur->next;index--;}node *tmp = cur->next;cur->next = cur->next->next;delete tmp;tmp = nullptr;_size--;}// 打印链表void printList(){node *cur = _dummyHead;while(cur->next != nullptr){cout << cur->next->value;cur = cur->next;if(cur->next){cout << "->";}}cout << endl;}private:int _size;node *_dummyHead;    
};

单独实现插入节点

struct node{int value;node *next;node(int initValue):value(initValue), next(nullptr){}
};
void addAtIndex(node *&head, int index, int value){node *dummyHead = new node(0);dummyHead->next = head;node *cur = dummyHead;int size = 0;    while(cur->next != nullptr){size++;cur = cur->next;}if(index < 0){index = 0;}if(index > size){delete dummyHead;cout << "index is invalid" << endl;return;}cur = dummyHead;while(index){cur = cur->next;index--;}node *newNode = new node(value);newNode->next = cur->next;cur->next = newNode;size++;head = dummyHead->next;delete dummyHead;
}

使用C语言实现,与C++基本一致,只不过我们要自己定义结点的创建函数,并且new/delete要对应转换为malloc/free

typedef struct node{int value;struct node *next;
}node;node *createNode(int value){node *newNode = (node *)malloc(sizeof(struct node));newNode->value = value;newNode->next = NULL;return newNode;
}void addAtIndex(node **head, int index, int value){node *dummyHead = createNode(0);dummyHead->next = *head;int size = 0;node *cur = dummyHead;while(cur->next != NULL){cur = cur->next;size++;}if(index < 0)index=0;if(index > size){free(dummyHead);    return;}cur = dummyHead;while(index){cur = cur->next;index--;}node *newNode = createNode(value);newNode->next = cur->next;cur->next = newNode;*head = dummyHead->next;free(dummyHead);
}

双向链表设计

class MyDualList{    
public:struct node{int value;node *next;node *prev;node(int initValue):value(initValue), next(nullptr), prev(nullptr){}};MyDualList(){_dummyHead = new node(0);_dummyTail = new node(0);_size = 0;_dummyHead->next = _dummyTail;_dummyTail->prev = _dummyHead;}int get(int index){if(index < 0 || index >= _size){return -1;}node *cur = _dummyHead->next;while(index){cur = cur->next;index--;}return cur->value;}void addAtHead(int value){node *newNode = new node(value);newNode->next = _dummyHead->next;_dummyHead->next->prev = newNode; // 跟单链表一致,只是在指针换向时多考虑一个prev指针_dummyHead->next = newNode;newNode->prev = _dummyHead; //_size++;}void addAtTail(int value){node *newNode = new node(value);// 这里设计的双向链表,与单向链表相比,末尾节点会指向_dummyTail,基于此可以像单向链表一样写// 不过从另一个角度来说,我们的尾插可以看作在_dummyTail之前插入一个节点_dummyTail->prev->next = newNode;newNode->prev = _dummyTail->prev;newNode->next = _dummyTail;_dummyTail->prev = newNode;_size++;}void addAtIndex(int index, int value){if(index < 0)index=0;if(index > _size)return;node *cur = _dummyHead;while(index){cur = cur->next;index--;}node *newNode = new node(value);newNode->next = cur->next;cur->next->prev = newNode;cur->next = newNode;newNode->prev = cur;_size++;}void deleteAtIndex(int index){if(index < 0 || index >= _size)return;node *cur = _dummyHead;while(index){cur = cur->next;index--;}node *tmp = cur->next;cur->next = cur->next->next;cur->next->prev = cur;delete tmp;_size--;}void printListForward(){node *cur = _dummyHead;while(cur->next != _dummyTail){cout << cur->next->value;cur = cur->next;if(cur->next != _dummyTail){cout << "->";}}cout << endl;}void printListReverse(){node *cur = _dummyTail;while(cur->prev != _dummyHead){cout << cur->prev->value;cur = cur->prev;if(cur->prev != _dummyHead){cout << "<-";}}cout << endl;}    
private:int _size = 0;node *_dummyHead, *_dummyTail;    
};



测试部分

  • 函数测试——添加与移除链表元素

    /* C++ */
    #include<iostream>
    using namespace std;struct node {int value;node *next;node(int x) : value(x), next(NULL) {}
    };void printList(node *head){node *dummyHead = new node(0);dummyHead->next = head;node *cur = dummyHead;while(cur->next){cout << cur->next->value;cur = cur->next;if(cur->next){cout << "->";}}cout << endl;
    }void removeElement(node *&head, int val){node *dummyHead = new node(0);dummyHead->next = head;node *cur = dummyHead;while(cur->next != NULL){if(cur->next->value == val){node *tmp = cur->next;cur->next = cur->next->next;delete tmp;}else{cur = cur->next;}}head = dummyHead->next;delete dummyHead;
    }void addAtIndex(node *&head, int index, int value){node *dummyHead = new node(0);dummyHead->next = head;node *cur = dummyHead;int size = 0;    while(cur->next != nullptr){size++;cur = cur->next;}if(index < 0){index = 0;}if(index > size){delete dummyHead;cout << "index is invalid" << endl;return;}cur = dummyHead;while(index){cur = cur->next;index--;}node *newNode = new node(value);newNode->next = cur->next;cur->next = newNode;size++;head = dummyHead->next;delete dummyHead;dummyHead = nullptr;
    }int main(void){node *head = new node(0);addAtIndex(head, 1, 1);addAtIndex(head, 2, 2);addAtIndex(head, 3, 3);addAtIndex(head, 4, 4);addAtIndex(head, 5, 5);cout << "the LinkedList is:" << endl;printList(head);removeElement(head, 2);printList(head);return 0;
    }
    

image-20240906163301527

/* C */
#include<stdio.h>
#include<stdlib.h>typedef struct node{int value;struct node *next;
}node;node *createNode(int value){node *newNode = (node *)malloc(sizeof(struct node));newNode->value = value;newNode->next = NULL;return newNode;
}void printList(node *head){node *dummyHead = createNode(0);dummyHead->next = head;node *cur = dummyHead;while(cur->next){printf("%d", cur->next->value);cur = cur->next;if(cur->next){printf("->");}}printf("\n");
}void addAtIndex(node **head, int index, int value){node *dummyHead = createNode(0);dummyHead->next = *head;int size = 0;node *cur = dummyHead;while(cur->next != NULL){cur = cur->next;size++;}if(index < 0)index=0;if(index > size){free(dummyHead);    return;}cur = dummyHead;while(index){cur = cur->next;index--;}node *newNode = createNode(value);newNode->next = cur->next;cur->next = newNode;*head = dummyHead->next;free(dummyHead);
}void removeElement(node **head, int val){node *dummyHead = createNode(0);dummyHead->next = *head;node *cur = dummyHead;while(cur->next != NULL){if(cur->next->value == val){node *tmp = cur->next;cur->next = cur->next->next;free(tmp);}else{cur = cur->next;}}*head = dummyHead->next;free(dummyHead);
}int main(void){node *head = createNode(0);addAtIndex(&head, 1, 1);addAtIndex(&head, 2, 2);addAtIndex(&head, 3, 3);addAtIndex(&head, 4, 4);addAtIndex(&head, 5, 5);printf("the LinkedList is:\n");printList(head);removeElement(&head, 0);printList(head);return 0;
}

image-20240906163424875

  • 链表设计测试

    #include<iostream>
    using namespace std;class MyList{    
    public:struct node{int value;node *next;node(int initValue):value(initValue), next(nullptr){}};    MyList(){_dummyHead = new node(0);_size = 0;}// 获取第index个结点的数值int get(int index){if(index > (_size-1) || index < 0){// throw out_of_range("index out of range!");cout << "index out of range!————return INT32_MAX = " << INT32_MAX << endl;return INT32_MAX;}node *cur = _dummyHead->next;while(index){cur = cur->next;index--;}return cur->value;}// 在链表最前面插入一个节点void addAtHead(int value){node *newNode = new node(value);newNode->next = _dummyHead->next;_dummyHead->next = newNode;_size++;}// 在链表最后面插入一个元素void addAtTail(int value){node *newNode = new node(value);        node *cur = _dummyHead;while(cur->next != nullptr){cur = cur->next;}cur->next = newNode;_size++;}// 在第index个节点之前插入一个节点void addAtIndex(int index, int value){if(index > _size){return;}if(index < 0){index = 0;}node *newNode = new node(value);node *cur = _dummyHead;while(index != 0){cur = cur->next;index--;}newNode->next = cur->next;cur->next = newNode;_size++;}// 删除第index个节点void deleteAtIndex(int index){if(index < 0 || index >= _size){return;}node *cur = _dummyHead;while(index != 0){cur = cur->next;index--;}node *tmp = cur->next;cur->next = cur->next->next;delete tmp;tmp = nullptr;_size--;}// 打印链表void printList(){node *cur = _dummyHead;while(cur->next != nullptr){cout << cur->next->value;cur = cur->next;if(cur->next){cout << "->";}}cout << endl;}private:int _size;node *_dummyHead;    
    };int main(){MyList list;list.addAtIndex(0,0);list.addAtIndex(1,1);list.addAtIndex(2,2);list.addAtIndex(3,3);list.addAtIndex(4,3);list.addAtIndex(5,4);list.printList();list.deleteAtIndex(3);list.printList();cout << list.get(1) << endl;return 0;
    }
    

image-20240906163634682

  • 双向链表设计测试

    #include<iostream>
    using namespace std;class MyDualList{    
    public:struct node{int value;node *next;node *prev;node(int initValue):value(initValue), next(nullptr), prev(nullptr){}};MyDualList(){_dummyHead = new node(0);_dummyTail = new node(0);_size = 0;_dummyHead->next = _dummyTail;_dummyTail->prev = _dummyHead;}int get(int index){if(index < 0 || index >= _size){return -1;}node *cur = _dummyHead->next;while(index){cur = cur->next;index--;}return cur->value;}void addAtHead(int value){node *newNode = new node(value);newNode->next = _dummyHead->next;_dummyHead->next->prev = newNode; // 跟单链表一致,只是在指针换向时多考虑一个prev指针_dummyHead->next = newNode;newNode->prev = _dummyHead; //_size++;}void addAtTail(int value){node *newNode = new node(value);// 这里设计的双向链表,与单向链表相比,末尾节点会指向_dummyTail,基于此可以像单向链表一样写// 不过从另一个角度来说,我们的尾插可以看作在_dummyTail之前插入一个节点_dummyTail->prev->next = newNode;newNode->prev = _dummyTail->prev;newNode->next = _dummyTail;_dummyTail->prev = newNode;_size++;}void addAtIndex(int index, int value){if(index < 0)index=0;if(index > _size)return;node *cur = _dummyHead;while(index){cur = cur->next;index--;}node *newNode = new node(value);newNode->next = cur->next;cur->next->prev = newNode;cur->next = newNode;newNode->prev = cur;_size++;}void deleteAtIndex(int index){if(index < 0 || index >= _size)return;node *cur = _dummyHead;while(index){cur = cur->next;index--;}node *tmp = cur->next;cur->next = cur->next->next;cur->next->prev = cur;delete tmp;_size--;}void printListForward(){node *cur = _dummyHead;while(cur->next != _dummyTail){cout << cur->next->value;cur = cur->next;if(cur->next != _dummyTail){cout << "->";}}cout << endl;}void printListReverse(){node *cur = _dummyTail;while(cur->prev != _dummyHead){cout << cur->prev->value;cur = cur->prev;if(cur->prev != _dummyHead){cout << "<-";}}cout << endl;}    
    private:int _size = 0;node *_dummyHead, *_dummyTail;    
    };int main(){MyDualList list;list.addAtIndex(0,0);list.addAtIndex(1,1);list.addAtIndex(2,2);list.addAtIndex(3,3);list.addAtIndex(4,3);list.addAtIndex(5,4);list.addAtTail(60);list.printListForward();list.printListReverse();list.deleteAtIndex(3);list.printListForward();list.printListReverse();cout << list.get(1) << endl;return 0;
    }
    

image-20240906163742188

这篇关于常见链表的设计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142876

相关文章

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

Mysql常见的SQL语句格式及实用技巧

《Mysql常见的SQL语句格式及实用技巧》本文系统梳理MySQL常见SQL语句格式,涵盖数据库与表的创建、删除、修改、查询操作,以及记录增删改查和多表关联等高级查询,同时提供索引优化、事务处理、临时... 目录一、常用语法汇总二、示例1.数据库操作2.表操作3.记录操作 4.高级查询三、实用技巧一、常用语

C++链表的虚拟头节点实现细节及注意事项

《C++链表的虚拟头节点实现细节及注意事项》虚拟头节点是链表操作中极为实用的设计技巧,它通过在链表真实头部前添加一个特殊节点,有效简化边界条件处理,:本文主要介绍C++链表的虚拟头节点实现细节及注... 目录C++链表虚拟头节点(Dummy Head)一、虚拟头节点的本质与核心作用1. 定义2. 核心价值二

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

HTML中meta标签的常见使用案例(示例详解)

《HTML中meta标签的常见使用案例(示例详解)》HTMLmeta标签用于提供文档元数据,涵盖字符编码、SEO优化、社交媒体集成、移动设备适配、浏览器控制及安全隐私设置,优化页面显示与搜索引擎索引... 目录html中meta标签的常见使用案例一、基础功能二、搜索引擎优化(seo)三、社交媒体集成四、移动

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

java中long的一些常见用法

《java中long的一些常见用法》在Java中,long是一种基本数据类型,用于表示长整型数值,接下来通过本文给大家介绍java中long的一些常见用法,感兴趣的朋友一起看看吧... 在Java中,long是一种基本数据类型,用于表示长整型数值。它的取值范围比int更大,从-922337203685477