深度学习笔记15_TensorFlow实现运动鞋品牌识别

2024-09-06 18:28

本文主要是介绍深度学习笔记15_TensorFlow实现运动鞋品牌识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

一、我的环境

1.语言环境:Python 3.9

2.编译器:Pycharm

3.深度学习环境:TensorFlow 2.10.0

二、GPU设置

       若使用的是cpu则可忽略

import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")

、导入数据

data_dir = "./data/"
data_dir = pathlib.Path(data_dir)image_count = len(list(data_dir.glob('*/*/*.jpg')))print("图片总数为:",image_count)
#图片总数为:578

、数据预处理

batch_size = 32
img_height = 224
img_width = 224"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory("./data/train/",seed=123,image_size=(img_height, img_width),batch_size=batch_size)"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory("./data/test/",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
class_names = train_ds.class_names
print(class_names)

运行结果: 

['adidas', 'nike']

五、可视化图片

plt.figure(figsize=(20, 10))for images, labels in train_ds.take(1):for i in range(20):ax = plt.subplot(5, 10, i + 1)plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.axis("off")
plt.show()

 运行结果:

​​

再次检查数据:

for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break

 运行结果:

(32, 224, 224, 3)
(32,)

六、配置数据集

  • shuffle():打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456
  • prefetch():预取数据,加速运行
  • cache():将数据集缓存到内存当中,加速运行
AUTOTUNE = tf.data.AUTOTUNEtrain_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

七、构建CNN网络模型

        卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。不需要输入batch size。color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道(color channel)。在此示例中,我们的 CNN 输入形状是 (180, 180, 3)。我们需要在声明第一层时将形状赋值给参数input_shape

"""
关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
"""model = models.Sequential([layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3  layers.AveragePooling2D((2, 2)),               # 池化层1,2*2采样layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3layers.AveragePooling2D((2, 2)),               # 池化层2,2*2采样layers.Dropout(0.3),  layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3layers.Dropout(0.3),  layers.Flatten(),                       # Flatten层,连接卷积层与全连接层layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取layers.Dense(len(class_names))               # 输出层,输出预期结果
])model.summary()  # 打印网络结构

运行结果:

_________________________________________________________________Layer (type)                Output Shape              Param #
=================================================================rescaling (Rescaling)       (None, 224, 224, 3)       0conv2d (Conv2D)             (None, 222, 222, 16)      448average_pooling2d (AverageP  (None, 111, 111, 16)     0ooling2D)conv2d_1 (Conv2D)           (None, 109, 109, 32)      4640average_pooling2d_1 (Averag  (None, 54, 54, 32)       0ePooling2D)dropout (Dropout)           (None, 54, 54, 32)        0conv2d_2 (Conv2D)           (None, 52, 52, 64)        18496dropout_1 (Dropout)         (None, 52, 52, 64)        0flatten (Flatten)           (None, 173056)            0dense (Dense)               (None, 128)               22151296dense_1 (Dense)             (None, 2)                 258=================================================================
Total params: 22,175,138
Trainable params: 22,175,138
Non-trainable params: 0
_________________________________________________________________

八、编译

        在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
# 设置初始学习率
initial_learning_rate = 0.001lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps=10,      # 敲黑板!!!这里是指 steps,不是指epochsdecay_rate=0.92,     # lr经过一次衰减就会变成 decay_rate*lrstaircase=True)# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)model.compile(optimizer=optimizer,loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])

 

早停与保存最佳模型参数

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStoppingepochs = 50# 保存最佳模型参数
checkpointer = ModelCheckpoint('best_model.h5',monitor='val_accuracy',verbose=1,save_best_only=True,save_weights_only=True)# 设置早停
earlystopper = EarlyStopping(monitor='val_accuracy', min_delta=0.001,patience=20, verbose=1)

九、训练模型

history = model.fit(train_ds,validation_data=val_ds,epochs=epochs,callbacks=[checkpointer, earlystopper])

运行结果:

Epoch 1/50
16/16 [==============================] - ETA: 0s - loss: 3.6308 - accuracy: 0.5000
Epoch 1: val_accuracy improved from -inf to 0.48684, saving model to best_model.h5
16/16 [==============================] - 7s 73ms/step - loss: 3.6308 - accuracy: 0.5000 - val_loss: 0.6932 - val_accuracy: 0.4868
Epoch 2/50
16/16 [==============================] - ETA: 0s - loss: 0.6951 - accuracy: 0.4880
Epoch 2: val_accuracy improved from 0.48684 to 0.50000, saving model to best_model.h5
16/16 [==============================] - 1s 40ms/step - loss: 0.6951 - accuracy: 0.4880 - val_loss: 0.6949 - val_accuracy: 0.5000
Epoch 3/50
15/16 [===========================>..] - ETA: 0s - loss: 0.6928 - accuracy: 0.4979
Epoch 3: val_accuracy did not improve from 0.50000
16/16 [==============================] - 1s 33ms/step - loss: 0.6927 - accuracy: 0.5060 - val_loss: 0.6932 - val_accuracy: 0.5000
Epoch 4/50
15/16 [===========================>..] - ETA: 0s - loss: 0.6922 - accuracy: 0.5553
Epoch 4: val_accuracy improved from 0.50000 to 0.51316, saving model to best_model.h5
16/16 [==============================] - 1s 41ms/step - loss: 0.6920 - accuracy: 0.5578 - val_loss: 0.6925 - val_accuracy: 0.5132
Epoch 5/50
15/16 [===========================>..] - ETA: 0s - loss: 0.6894 - accuracy: 0.5574
Epoch 5: val_accuracy improved from 0.51316 to 0.65789, saving model to best_model.h5
16/16 [==============================] - 1s 39ms/step - loss: 0.6890 - accuracy: 0.5697 - val_loss: 0.6891 - val_accuracy: 0.6579
Epoch 6/50
15/16 [===========================>..] - ETA: 0s - loss: 0.6883 - accuracy: 0.5340
Epoch 6: val_accuracy did not improve from 0.65789
16/16 [==============================] - 1s 33ms/step - loss: 0.6882 - accuracy: 0.5339 - val_loss: 0.6823 - val_accuracy: 0.6184
Epoch 7/50
15/16 [===========================>..] - ETA: 0s - loss: 0.6810 - accuracy: 0.6191
Epoch 7: val_accuracy did not improve from 0.65789
16/16 [==============================] - 1s 33ms/step - loss: 0.6805 - accuracy: 0.6155 - val_loss: 0.6774 - val_accuracy: 0.6316
Epoch 8/50
15/16 [===========================>..] - ETA: 0s - loss: 0.6737 - accuracy: 0.6043
Epoch 8: val_accuracy improved from 0.65789 to 0.71053, saving model to best_model.h5
16/16 [==============================] - 1s 39ms/step - loss: 0.6738 - accuracy: 0.5996 - val_loss: 0.6608 - val_accuracy: 0.7105
Epoch 9/50
15/16 [===========================>..] - ETA: 0s - loss: 0.6461 - accuracy: 0.6979
Epoch 9: val_accuracy did not improve from 0.71053
16/16 [==============================] - 1s 33ms/step - loss: 0.6424 - accuracy: 0.7012 - val_loss: 0.6200 - val_accuracy: 0.6974
Epoch 10/50
15/16 [===========================>..] - ETA: 0s - loss: 0.6148 - accuracy: 0.6979
Epoch 10: val_accuracy did not improve from 0.71053
16/16 [==============================] - 1s 34ms/step - loss: 0.6114 - accuracy: 0.6972 - val_loss: 0.6302 - val_accuracy: 0.6316
Epoch 11/50
15/16 [===========================>..] - ETA: 0s - loss: 0.5956 - accuracy: 0.7234
Epoch 11: val_accuracy improved from 0.71053 to 0.73684, saving model to best_model.h5
16/16 [==============================] - 1s 39ms/step - loss: 0.5968 - accuracy: 0.7191 - val_loss: 0.5779 - val_accuracy: 0.7368
Epoch 12/50
15/16 [===========================>..] - ETA: 0s - loss: 0.5442 - accuracy: 0.7723
Epoch 12: val_accuracy did not improve from 0.73684
16/16 [==============================] - 1s 33ms/step - loss: 0.5505 - accuracy: 0.7570 - val_loss: 0.6001 - val_accuracy: 0.6579
Epoch 13/50
15/16 [===========================>..] - ETA: 0s - loss: 0.5566 - accuracy: 0.7298
Epoch 13: val_accuracy improved from 0.73684 to 0.75000, saving model to best_model.h5
16/16 [==============================] - 1s 40ms/step - loss: 0.5581 - accuracy: 0.7251 - val_loss: 0.5442 - val_accuracy: 0.7500
Epoch 14/50
15/16 [===========================>..] - ETA: 0s - loss: 0.5194 - accuracy: 0.7617
Epoch 14: val_accuracy did not improve from 0.75000
16/16 [==============================] - 1s 33ms/step - loss: 0.5200 - accuracy: 0.7629 - val_loss: 0.5347 - val_accuracy: 0.7368
Epoch 15/50
15/16 [===========================>..] - ETA: 0s - loss: 0.5114 - accuracy: 0.7681
Epoch 15: val_accuracy did not improve from 0.75000
16/16 [==============================] - 1s 33ms/step - loss: 0.5048 - accuracy: 0.7769 - val_loss: 0.5161 - val_accuracy: 0.7500
Epoch 16/50
15/16 [===========================>..] - ETA: 0s - loss: 0.4836 - accuracy: 0.7830
Epoch 16: val_accuracy improved from 0.75000 to 0.76316, saving model to best_model.h5
16/16 [==============================] - 1s 40ms/step - loss: 0.4901 - accuracy: 0.7789 - val_loss: 0.5069 - val_accuracy: 0.7632
Epoch 17/50
15/16 [===========================>..] - ETA: 0s - loss: 0.4636 - accuracy: 0.7809
Epoch 17: val_accuracy did not improve from 0.76316
16/16 [==============================] - 1s 33ms/step - loss: 0.4585 - accuracy: 0.7888 - val_loss: 0.5071 - val_accuracy: 0.7500
Epoch 18/50
15/16 [===========================>..] - ETA: 0s - loss: 0.4717 - accuracy: 0.7723
Epoch 18: val_accuracy did not improve from 0.76316
16/16 [==============================] - 1s 34ms/step - loss: 0.4655 - accuracy: 0.7769 - val_loss: 0.5034 - val_accuracy: 0.7368
Epoch 19/50
15/16 [===========================>..] - ETA: 0s - loss: 0.4610 - accuracy: 0.8064
Epoch 19: val_accuracy did not improve from 0.76316
16/16 [==============================] - 1s 33ms/step - loss: 0.4567 - accuracy: 0.8088 - val_loss: 0.5440 - val_accuracy: 0.7368
Epoch 20/50
15/16 [===========================>..] - ETA: 0s - loss: 0.4547 - accuracy: 0.7872
Epoch 20: val_accuracy improved from 0.76316 to 0.78947, saving model to best_model.h5
16/16 [==============================] - 1s 40ms/step - loss: 0.4507 - accuracy: 0.7948 - val_loss: 0.4812 - val_accuracy: 0.7895
Epoch 21/50
15/16 [===========================>..] - ETA: 0s - loss: 0.4228 - accuracy: 0.8298
Epoch 21: val_accuracy did not improve from 0.78947
16/16 [==============================] - 1s 33ms/step - loss: 0.4238 - accuracy: 0.8287 - val_loss: 0.4926 - val_accuracy: 0.7632
Epoch 22/50
15/16 [===========================>..] - ETA: 0s - loss: 0.4460 - accuracy: 0.8125
Epoch 22: val_accuracy did not improve from 0.78947
16/16 [==============================] - 1s 33ms/step - loss: 0.4386 - accuracy: 0.8187 - val_loss: 0.4857 - val_accuracy: 0.7632
Epoch 23/50
15/16 [===========================>..] - ETA: 0s - loss: 0.4262 - accuracy: 0.8167
Epoch 23: val_accuracy did not improve from 0.78947
16/16 [==============================] - 1s 34ms/step - loss: 0.4204 - accuracy: 0.8227 - val_loss: 0.4718 - val_accuracy: 0.7632
Epoch 24/50
15/16 [===========================>..] - ETA: 0s - loss: 0.4196 - accuracy: 0.8277
Epoch 24: val_accuracy did not improve from 0.78947
16/16 [==============================] - 1s 33ms/step - loss: 0.4208 - accuracy: 0.8247 - val_loss: 0.5068 - val_accuracy: 0.7632
Epoch 25/50
15/16 [===========================>..] - ETA: 0s - loss: 0.4112 - accuracy: 0.8362
Epoch 25: val_accuracy did not improve from 0.78947
16/16 [==============================] - 1s 33ms/step - loss: 0.4118 - accuracy: 0.8347 - val_loss: 0.4658 - val_accuracy: 0.7895
Epoch 26/50
15/16 [===========================>..] - ETA: 0s - loss: 0.4005 - accuracy: 0.8298
Epoch 26: val_accuracy did not improve from 0.78947
16/16 [==============================] - 1s 34ms/step - loss: 0.3981 - accuracy: 0.8347 - val_loss: 0.4822 - val_accuracy: 0.7632
Epoch 27/50
15/16 [===========================>..] - ETA: 0s - loss: 0.4003 - accuracy: 0.8426
Epoch 27: val_accuracy did not improve from 0.78947
16/16 [==============================] - 1s 34ms/step - loss: 0.4038 - accuracy: 0.8406 - val_loss: 0.4756 - val_accuracy: 0.7763
Epoch 28/50
15/16 [===========================>..] - ETA: 0s - loss: 0.3884 - accuracy: 0.8511
Epoch 28: val_accuracy improved from 0.78947 to 0.80263, saving model to best_model.h5
16/16 [==============================] - 1s 40ms/step - loss: 0.3967 - accuracy: 0.8486 - val_loss: 0.4636 - val_accuracy: 0.8026
Epoch 29/50
15/16 [===========================>..] - ETA: 0s - loss: 0.4139 - accuracy: 0.8489
Epoch 29: val_accuracy did not improve from 0.80263
16/16 [==============================] - 1s 33ms/step - loss: 0.4091 - accuracy: 0.8486 - val_loss: 0.4735 - val_accuracy: 0.7763
Epoch 30/50
15/16 [===========================>..] - ETA: 0s - loss: 0.3857 - accuracy: 0.8617
Epoch 30: val_accuracy did not improve from 0.80263
16/16 [==============================] - 1s 34ms/step - loss: 0.3870 - accuracy: 0.8586 - val_loss: 0.4655 - val_accuracy: 0.7763
Epoch 31/50
15/16 [===========================>..] - ETA: 0s - loss: 0.3853 - accuracy: 0.8447
Epoch 31: val_accuracy did not improve from 0.80263
16/16 [==============================] - 1s 33ms/step - loss: 0.3908 - accuracy: 0.8347 - val_loss: 0.4688 - val_accuracy: 0.7763
Epoch 32/50
15/16 [===========================>..] - ETA: 0s - loss: 0.3814 - accuracy: 0.8596
Epoch 32: val_accuracy did not improve from 0.80263
16/16 [==============================] - 1s 34ms/step - loss: 0.3869 - accuracy: 0.8546 - val_loss: 0.4728 - val_accuracy: 0.7632
Epoch 33/50
15/16 [===========================>..] - ETA: 0s - loss: 0.3938 - accuracy: 0.8396
Epoch 33: val_accuracy did not improve from 0.80263
16/16 [==============================] - 1s 34ms/step - loss: 0.3887 - accuracy: 0.8446 - val_loss: 0.4798 - val_accuracy: 0.7763
Epoch 34/50
15/16 [===========================>..] - ETA: 0s - loss: 0.4032 - accuracy: 0.8542
Epoch 34: val_accuracy did not improve from 0.80263
16/16 [==============================] - 1s 34ms/step - loss: 0.3955 - accuracy: 0.8586 - val_loss: 0.4708 - val_accuracy: 0.7632
Epoch 35/50
15/16 [===========================>..] - ETA: 0s - loss: 0.3937 - accuracy: 0.8375
Epoch 35: val_accuracy did not improve from 0.80263
16/16 [==============================] - 1s 34ms/step - loss: 0.3865 - accuracy: 0.8426 - val_loss: 0.4695 - val_accuracy: 0.7632
Epoch 36/50
15/16 [===========================>..] - ETA: 0s - loss: 0.3883 - accuracy: 0.8447
Epoch 36: val_accuracy did not improve from 0.80263
16/16 [==============================] - 1s 34ms/step - loss: 0.3862 - accuracy: 0.8486 - val_loss: 0.4700 - val_accuracy: 0.7632
Epoch 37/50
15/16 [===========================>..] - ETA: 0s - loss: 0.3729 - accuracy: 0.8617
Epoch 37: val_accuracy did not improve from 0.80263
16/16 [==============================] - 1s 33ms/step - loss: 0.3767 - accuracy: 0.8586 - val_loss: 0.4685 - val_accuracy: 0.7632
Epoch 38/50
15/16 [===========================>..] - ETA: 0s - loss: 0.3831 - accuracy: 0.8479
Epoch 38: val_accuracy did not improve from 0.80263
16/16 [==============================] - 1s 34ms/step - loss: 0.3788 - accuracy: 0.8506 - val_loss: 0.4720 - val_accuracy: 0.7632
Epoch 39/50
15/16 [===========================>..] - ETA: 0s - loss: 0.3872 - accuracy: 0.8468
Epoch 39: val_accuracy did not improve from 0.80263
16/16 [==============================] - 1s 33ms/step - loss: 0.3872 - accuracy: 0.8466 - val_loss: 0.4648 - val_accuracy: 0.7895
Epoch 40/50
15/16 [===========================>..] - ETA: 0s - loss: 0.3800 - accuracy: 0.8489
Epoch 40: val_accuracy did not improve from 0.80263
16/16 [==============================] - 1s 34ms/step - loss: 0.3739 - accuracy: 0.8546 - val_loss: 0.4682 - val_accuracy: 0.7632
Epoch 41/50
15/16 [===========================>..] - ETA: 0s - loss: 0.3800 - accuracy: 0.8511
Epoch 41: val_accuracy did not improve from 0.80263
16/16 [==============================] - 1s 34ms/step - loss: 0.3813 - accuracy: 0.8486 - val_loss: 0.4649 - val_accuracy: 0.7895
Epoch 42/50
15/16 [===========================>..] - ETA: 0s - loss: 0.3727 - accuracy: 0.8617
Epoch 42: val_accuracy did not improve from 0.80263
16/16 [==============================] - 1s 34ms/step - loss: 0.3712 - accuracy: 0.8645 - val_loss: 0.4675 - val_accuracy: 0.7632
Epoch 43/50
15/16 [===========================>..] - ETA: 0s - loss: 0.3803 - accuracy: 0.8468
Epoch 43: val_accuracy did not improve from 0.80263
16/16 [==============================] - 1s 34ms/step - loss: 0.3830 - accuracy: 0.8486 - val_loss: 0.4672 - val_accuracy: 0.7632
Epoch 44/50
15/16 [===========================>..] - ETA: 0s - loss: 0.3648 - accuracy: 0.8745
Epoch 44: val_accuracy did not improve from 0.80263
16/16 [==============================] - 1s 34ms/step - loss: 0.3698 - accuracy: 0.8705 - val_loss: 0.4708 - val_accuracy: 0.7632
Epoch 45/50
15/16 [===========================>..] - ETA: 0s - loss: 0.3742 - accuracy: 0.8489
Epoch 45: val_accuracy did not improve from 0.80263
16/16 [==============================] - 1s 33ms/step - loss: 0.3695 - accuracy: 0.8546 - val_loss: 0.4683 - val_accuracy: 0.7632
Epoch 46/50
15/16 [===========================>..] - ETA: 0s - loss: 0.3792 - accuracy: 0.8447
Epoch 46: val_accuracy did not improve from 0.80263
16/16 [==============================] - 1s 33ms/step - loss: 0.3878 - accuracy: 0.8406 - val_loss: 0.4706 - val_accuracy: 0.7632
Epoch 47/50
15/16 [===========================>..] - ETA: 0s - loss: 0.3681 - accuracy: 0.8745
Epoch 47: val_accuracy did not improve from 0.80263
16/16 [==============================] - 1s 34ms/step - loss: 0.3639 - accuracy: 0.8745 - val_loss: 0.4708 - val_accuracy: 0.7632
Epoch 48/50
15/16 [===========================>..] - ETA: 0s - loss: 0.3771 - accuracy: 0.8489
Epoch 48: val_accuracy did not improve from 0.80263
16/16 [==============================] - 1s 34ms/step - loss: 0.3778 - accuracy: 0.8506 - val_loss: 0.4729 - val_accuracy: 0.7632
Epoch 48: early stopping
1/1 [==============================] - 0s 100ms/step

 十、模型评估

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(len(loss))plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

十一、指定图片预测

# 加载效果最好的模型权重
model.load_weights('best_model.h5')
from PIL import Image
import numpy as npimg = Image.open("./data/test/nike/1.jpg")  #这里选择你需要预测的图片
image = tf.image.resize(img, [img_height, img_width])img_array = tf.expand_dims(image, 0) #/255.0  # 记得做归一化处理(与训练集处理方式保持一致)predictions = model.predict(img_array) # 这里选用你已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])

运行结果:

预测结果为: nike

十二、总结

   本周通过学习TensorFlow实现运动鞋品牌识别;首先学习设置动态学习率,在训练神经网络时动态地降低学习率,可以帮助优化算法更有效地收敛到全局最小值,从而提高模型的性能。其次就是学习早停与保存最佳模型参数,模型在指定epoch次都没有提升的情况下,可以提前停止训练。

这篇关于深度学习笔记15_TensorFlow实现运动鞋品牌识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142781

相关文章

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句