15 Python模块

2024-09-06 14:36
文章标签 python 模块 15

本文主要是介绍15 Python模块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本篇是 Python 系列教程第 15 篇,更多内容敬请访问我的 Python 合集

一个模块其实就是一个文件(以.py结尾)。使用模块的好处是便于维护和重用代码。

要创建一个模块,只需编写一个新的文本文件,保存为 .py 扩展名。

1 引入模块

1.1 导入整个模块

import mymodule
mymodule.some_function()

1.2 导入特定的函数或类

from mymodule import some_function
some_function()

1.3 导入所有内容

from mymodule import *
some_function()  # 直接调用函数,无需模块前缀

1.4 使用别名

import mymodule as mm
mm.some_function()

2 常用模块

Python 的标准库非常庞大,提供了大量的内置模块来支持各种编程任务。这里列举了一些常用的模块及其主要用途:

2.1 标准库模块

2.1.1 os

操作系统相关功能,如读取环境变量、改变目录等。

import os
print(os.getcwd())  # 获取当前工作目录
2.1.2 sys

系统特定的一些变量和函数,如获取命令行参数、退出程序等。

import sys
print(sys.argv)  # 获取命令行参数
2.1.3 math

数学函数,如平方根、对数等。

import math
print(math.sqrt(16))  # 计算平方根
2.1.4 random

生成随机数。

import random
print(random.randint(1, 100))  # 生成一个1到100之间的随机整数
2.1.5 datetime

日期和时间操作。

from datetime import datetime
print(datetime.now())  # 获取当前日期和时间
2.1.6 re

正则表达式支持。

import re
pattern = r'\d+'
result = re.findall(pattern, '123 abc 456')
print(result)  # 输出所有匹配数字的字符串
2.1.7 json

JSON 编码和解码。

import json
data = {'name': 'John', 'age': 30}
json_str = json.dumps(data)
print(json_str)  # 将字典转换为 JSON 字符串
2.1.8 collections

高级容器类型,如 defaultdict, Counter, deque 等。

from collections import defaultdict
d = defaultdict(int)
d['a'] += 1
print(d['a'])  # 输出: 1
2.1.9 itertools

迭代工具,提供了高效的循环迭代器。

import itertools
for x in itertools.count(start=1):print(x)if x > 10:break  # 无限计数,直到超过10
2.1.10 functools

高阶函数工具,如装饰器、偏函数等。

from functools import lru_cache
@lru_cache(maxsize=None)
def fib(n):if n < 2:return nreturn fib(n-1) + fib(n-2)
print(fib(10))  # 计算斐波那契数列第10项
2.1.11 pathlib

用于处理路径的现代接口。

from pathlib import Path
p = Path('/etc') / 'passwd'
print(p)  # 输出: /etc/passwd
12. argparse

解析命令行参数和选项。

import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--input", help="input file")
args = parser.parse_args()
print(args.input)

2.2 第三方模块

除了标准库之外,还有许多第三方模块可以安装和使用,例如:

  • NumPy - 数值计算。
  • Pandas - 数据分析。
  • Matplotlib - 数据可视化。
  • Requests - 发送 HTTP 请求。
  • Flask - Web 开发框架。
  • SQLAlchemy - 数据库抽象层。

这篇关于15 Python模块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142278

相关文章

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

Python ORM神器之SQLAlchemy基本使用完全指南

《PythonORM神器之SQLAlchemy基本使用完全指南》SQLAlchemy是Python主流ORM框架,通过对象化方式简化数据库操作,支持多数据库,提供引擎、会话、模型等核心组件,实现事务... 目录一、什么是SQLAlchemy?二、安装SQLAlchemy三、核心概念1. Engine(引擎)