Convolutional Neural Networks for Sentence Classification论文解读

本文主要是介绍Convolutional Neural Networks for Sentence Classification论文解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基本信息

作者Yoon Kimdoi
发表时间2014期刊EMNLP
网址https://doi.org/10.48550/arXiv.1408.5882

研究背景

1. What’s known 既往研究已证实
CV领域著名的CNN。

2. What’s new 创新点
将CNN应用于NLP,打破了传统NLP任务主要依赖循环神经网络(RNN)及其变体的局面。
用预训练的词向量(如word2vec)作为输入,而不是传统的one-hot编码,提高了模型的泛化能力和性能。
采用了多个不同尺寸的卷积核来提取句子中的关键信息,类似于多窗口大小的ngram,从而能够更好地捕捉局部相关性,提高模型的特征提取能力。

3. What’s are the implications 意义
TextCNN模型结构相对简单,但计算快速、实现方便,且准确性较高

研究方法

1. TextCNN
● 嵌入层
embedding layer,用于把单词映射到一组向量表示。
● 卷积层
使用了多个filters,这里有3,4,5个单词一次遍历。

在处理图像数据时,CNN使用的卷积核的宽度和高度的一样的,但是在text-CNN中,卷积核的宽度是与词向量的维度一致。这是因为我们输入的每一行向量代表一个词,在抽取特征的过程中,词做为文本的最小粒度。而高度和CNN一样,可以自行设置(通常取值2,3,4,5),高度就类似于n-gram了。由于我们的输入是一个句子,句子中相邻的词之间关联性很高,因此,当我们用卷积核进行卷积时,不仅考虑了词义而且考虑了词序及其上下文(类似于skip-gram和CBOW模型的思想)。

● 池化层
max-pooling,就是选出其中最大的一个。

因为在卷积层过程中我们使用了不同高度的卷积核,使得我们通过卷积层后得到的向量维度会不一致,所以在池化层中,我们使用1-Max-pooling对每个特征向量池化成一个值,即抽取每个特征向量的最大值表示该特征,而且认为这个最大值表示的是最重要的特征。当我们对所有特征向量进行1-Max-Pooling之后,还需要将每个值给拼接起来。得到池化层最终的特征向量。在池化层到全连接层之前可以加上dropout防止过拟合。

● 全链接层
利用dropout防止过拟合,之后利用softmax将每个分类的score转化为概率。
通过score我们可以计算得出模型的loss,而我们训练的目的就是最小化这个loss。对于分类问题,最常用的损失函数是cross-entropy 损失。

【NLP】保姆级教程:手把手带你CNN文本分类(附代码)

结果与讨论

  1. 参数少,计算快,耗时少。
  2. 不可解释性强,计算时不能考虑到文本位置和顺序信息。

重要图

文献中重要的图记录下来
在这里插入图片描述

这篇关于Convolutional Neural Networks for Sentence Classification论文解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142232

相关文章

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

MySQL的ALTER TABLE命令的使用解读

《MySQL的ALTERTABLE命令的使用解读》:本文主要介绍MySQL的ALTERTABLE命令的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、查看所建表的编China编程码格式2、修改表的编码格式3、修改列队数据类型4、添加列5、修改列的位置5.1、把列

Linux CPU飙升排查五步法解读

《LinuxCPU飙升排查五步法解读》:本文主要介绍LinuxCPU飙升排查五步法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录排查思路-五步法1. top命令定位应用进程pid2.php top-Hp[pid]定位应用进程对应的线程tid3. printf"%

解读@ConfigurationProperties和@value的区别

《解读@ConfigurationProperties和@value的区别》:本文主要介绍@ConfigurationProperties和@value的区别及说明,具有很好的参考价值,希望对大家... 目录1. 功能对比2. 使用场景对比@ConfigurationProperties@Value3. 核

Jupyter notebook安装步骤解读

《Jupyternotebook安装步骤解读》:本文主要介绍Jupyternotebook安装步骤,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、开始安装二、更改打开文件位置和快捷启动方式总结在安装Jupyter notebook 之前,确认您已安装pytho

Java中的StringUtils.isBlank()方法解读

《Java中的StringUtils.isBlank()方法解读》:本文主要介绍Java中的StringUtils.isBlank()方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录所在库及依赖引入方法签名方法功能示例代码代码解释与其他方法的对比总结StringUtils.isBl

对Django中时区的解读

《对Django中时区的解读》:本文主要介绍对Django中时区的解读方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景前端数据库中存储接口返回AI的解释问题:这样设置的作用答案获取当前时间(自动带时区)转换为北京时间显示总结背景设置时区为北京时间 TIM

Java中的内部类和常用类用法解读

《Java中的内部类和常用类用法解读》:本文主要介绍Java中的内部类和常用类用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录内部类和常用类内部类成员内部类静态内部类局部内部类匿名内部类常用类Object类包装类String类StringBuffer和Stri

JVM垃圾回收机制之GC解读

《JVM垃圾回收机制之GC解读》:本文主要介绍JVM垃圾回收机制之GC,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、死亡对象的判断算法1.1 引用计数算法1.2 可达性分析算法二、垃圾回收算法2.1 标记-清除算法2.2 复制算法2.3 标记-整理算法2.4