力扣1049-最后一块石头的重量II(Java详细题解)

2024-09-06 13:04

本文主要是介绍力扣1049-最后一块石头的重量II(Java详细题解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:1049. 最后一块石头的重量 II - 力扣(LeetCode)

前情提要:

因为本人最近都来刷dp类的题目所以该题就默认用dp方法来做。

最近刚学完01背包,所以现在的题解都是以01背包问题为基础再来写的。

如果大家不懂01背包的话,建议可以去学一学,01背包问题可以说是背包问题的基础。

如果大家感兴趣,我后期可以出一篇专门讲解01背包问题。

dp五部曲。

1.确定dp数组和i下标的含义。

2.确定递推公式。

3.dp初始化。

4.确定dp的遍历顺序。

5.如果没有ac打印dp数组 利于debug。

每一个dp题目如果都用这五步分析清楚,那么这道题就能解出来了。

这里下文统一使用一维dp数组。

题目思路:

刚看到该题,可能大家都有点懵,那么多石头,我们从中选出俩个石头粉碎,最多剩下一块石头,返回该石头的最小可能重量。

但是我们思考一下,他最后最多剩下一个石头,我们能不能将这一大堆石头,分为俩堆。

然后让这俩堆里的石头任何挑俩个(一堆挑一个)不断的粉碎。

但是我们怎么求出最小的可能重量呢,其实我们就让这俩堆的石头重量和尽可能的相等,最后的俩堆石头的差值就是剩下的最后一块石头了。

那么差值越小最后一块石头的重量就越小,所以我们要求这俩堆石头的重量和尽可能相等。

分析到这,看过我力扣416-分割等和子集那篇题解的会发现,这道题跟那道题很像。

都是分为俩个不同的部分,求某一个部分,另一个部分也就确定下来了。

比如这一堆石头重量为i,另一堆石头不就为sum(重量总和) - i。

其实不仅思路都很像,代码也只是最后处理背包价值的逻辑有些不同。

没看过的也没关系,我会重新再讲一遍。

分成俩个石头堆后,如果我们确定了一个石头堆的重量和,另一半的就可以确定下来了。

所以我们分析其中的一个石头堆就可以。

其实我们就是要让其中的一堆石头重量尽可能的与另一堆相等对吧。

也就是让其中的一堆石头重量尽可能的等于一大堆石头重量的一半。

如何让一堆石头的重量尽可能等于整个石头堆的重量和的一半呢?

这里就要用到01背包的应用了。

01背包是有n个物品,每个物品有其对应的价值和重量,给你一个容量为m的背包,让你求该背包所能放下物品的最大价值。

那么这道题的子集怎么跟01背包关联呢?

其实这一堆石头的重量和就可以当做01背包的背包容量,石头本身可以当做他的价值和重量,即他的价值和重量都一致。

怎么理解呢?

我们要让一个石头堆的重量和尽可能的等于整个石头堆重量的一半。

也就是我们把这整个石头堆重量的一半当作我们的背包容量,然后能装多少是多少,求出最大装的重量(也就是背包的价值)即可。

整个石头堆重量的一半当做背包容量。

石头本身就是物品。

石头的重量就是物品的价值,同时也代表它所占的背包容量。

其实01背包我们是要尽可能的将背包装满然后得出他的最大价值。

这个题求的也是尽可能的让背包(石头堆)装满求出他的最大价值(重量)。

接着我们用dp五部曲来系统分析。

1.确定dp数组和i下标的含义。

dp[i] 表示i容量的背包所能放下的最大价值。

如果后面有不理解的,多理解一下dp数组的含义。

2.确定递推公式。

我们每个元素只有选和不选俩种状态。

即选择stones[i]这个元素时,对于背包只有选和不选俩个状态。

我们类比一下01背包问题的递推公式dp[j] = Math.max(dp[j],dp[j - weight[i] + value[i]);

没选的状态就是dp[j]。没有选他那他的重量肯定就不变。

选的状态就是dp[j - weigtht[i]] + value[i]。

既然选择要加stones[i],那我们肯定要求出在放入他之前的最大价值再加上他自身的价值就是背包整个的价值。

放入之前的容量就是j - weigth[i]

因为本题是重量与价值一致。

我们尽可能的将背包填满使它的价值尽可能的大。

所以当背包容量为j时,dp[j] = Math.max(dp[j],dp[j - nums[i]] + nums[i]);

3.dp初始化。

初始化也很重要,当我们的元素和为0时,那我们所占的元素价值为多少?

肯定为0啊,所以dp[0] = 0。

那其他非零元素和我们怎么初始化呢?

其实非零元素和我们可以不管他们,他们都可以根据当前元素选或不选来推出重量和的价值。

4.确定dp的遍历顺序。

背包问题我们的遍历顺序是先遍历物品再遍历背包,同理,元素和也是先遍历物品(石头)再遍历背包(一大堆石头重量的一半)。

且第一层循环遍历物品是从前往后遍历,而第二层循环是从后往遍历。

从后往前遍历背包容量是确保每个物品只放一次,即不需要前面的状态。

如果从前往后遍历背包容量可能导致一个物品放入多次,他使用了前面的状态。

而本题元素只能使用一次,所以背包容量应该从后往前遍历。

5.如果没有ac打印dp数组 利于debug。

最后dp[i]模拟后情况就是这样,大家可以打印dp数组对着看看哪与你的不符。

在这里插入图片描述

最终代码:

class Solution {public int lastStoneWeightII(int[] stones) {//本题的思路关键就是分成尽可能相等的俩堆,然后让俩堆相撞。剩下的石头就是最小可能重量。//定义整个石头堆的总和int sum = 0;for(int i = 0;i < stones.length;i ++){sum += stones[i];}//求出背包的容量int tagert = sum / 2;//确定dp数组含义int dp[] = new int [tagert + 1];//初始化dp数组dp[0] = 0;//确定dp数组的遍历顺序for(int i = 0;i < stones.length;i ++){for(int j = tagert; j >= stones[i];j --){dp[j] = Math.max(dp[j],dp[j - stones[i]] + stones[i]);}}//dp[tagert] 是这一堆最大能装的重量 另一堆就是 sum - dp[tagert]  //俩堆的石头的差值 就是所剩下的最后一块石头的重量 sum - dp[tagert] - dp[tagert] return sum - (2 * dp[tagert]);}
}

这一篇博客就到这了,如果你有什么疑问和想法可以打在评论区,或者私信我。

我很乐意为你解答。那么我们下篇再见!

这篇关于力扣1049-最后一块石头的重量II(Java详细题解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142079

相关文章

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

java中long的一些常见用法

《java中long的一些常见用法》在Java中,long是一种基本数据类型,用于表示长整型数值,接下来通过本文给大家介绍java中long的一些常见用法,感兴趣的朋友一起看看吧... 在Java中,long是一种基本数据类型,用于表示长整型数值。它的取值范围比int更大,从-922337203685477

java Long 与long之间的转换流程

《javaLong与long之间的转换流程》Long类提供了一些方法,用于在long和其他数据类型(如String)之间进行转换,本文将详细介绍如何在Java中实现Long和long之间的转换,感... 目录概述流程步骤1:将long转换为Long对象步骤2:将Longhttp://www.cppcns.c

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

SpringBoot服务获取Pod当前IP的两种方案

《SpringBoot服务获取Pod当前IP的两种方案》在Kubernetes集群中,SpringBoot服务获取Pod当前IP的方案主要有两种,通过环境变量注入或通过Java代码动态获取网络接口IP... 目录方案一:通过 Kubernetes Downward API 注入环境变量原理步骤方案二:通过

Springboot整合Redis主从实践

《Springboot整合Redis主从实践》:本文主要介绍Springboot整合Redis主从的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言原配置现配置测试LettuceConnectionFactory.setShareNativeConnect

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

Springboot3+将ID转为JSON字符串的详细配置方案

《Springboot3+将ID转为JSON字符串的详细配置方案》:本文主要介绍纯后端实现Long/BigIntegerID转为JSON字符串的详细配置方案,s基于SpringBoot3+和Spr... 目录1. 添加依赖2. 全局 Jackson 配置3. 精准控制(可选)4. OpenAPI (Spri

Java中实现线程的创建和启动的方法

《Java中实现线程的创建和启动的方法》在Java中,实现线程的创建和启动是两个不同但紧密相关的概念,理解为什么要启动线程(调用start()方法)而非直接调用run()方法,是掌握多线程编程的关键,... 目录1. 线程的生命周期2. start() vs run() 的本质区别3. 为什么必须通过 st