栈和队列的习题详解(3):用栈实现队列

2024-09-06 10:12

本文主要是介绍栈和队列的习题详解(3):用栈实现队列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:

  小编在上一篇博客中写过了用队列实现栈的操作,可能很多读者朋友会好奇用两个栈是否可以实现队列呢》这是当然可以的,下面小编将要讲述用栈实现队列这个习题,废话不多说,开始今天的做题之旅~


目录

1.用栈实现队列

1.1.题干的解读

1.2.题目的解题思路

1.3.队列的功能实现

 1.3.1.队列的初始化(MyQueue* myQueueCreate()) 

 1.3.2.入队列操作(void myQueuePush(MyQueue* obj, int x)) 

 1.3.3.判断队列是否为空(myQueueEmpty(MyQueue* obj)) 

 1.3.4.出队列操作(int myQueuePop(MyQueue* obj)) 

 1.3.5.取队头操作(int myQueuePeek(MyQueue* obj))

 1.3.6.销毁队列的操作(void myQueueFree(MyQueue* obj)) 

1.4.代码展示

2.总结 


正文:

1.用栈实现队列

  老规矩,小编先把习题链接发过来:232. 用栈实现队列 - 力扣(LeetCode)

1.1.题干的解读

  可能很多读者朋友看到这个题的时候和小编当时想的一样,这个题是不是和用队列实现栈一样的思路来写呢?就是两个栈之间进行来回倒数据来实现,这个题的确也是按照类似的思路来实现的,不过此时小编还得再说一下栈和队列的各自的特点,栈是后进先出,队列是先进先出,所以队列是第一个进去的元素第一个出去,而栈反而是第一个进去的元素最后一个除出去,所以小编当时也是想了很久也没想明白这个题是如何来写的,因为倒数据似乎也是有一点麻烦的,于是乎小编在听完老师的讲解以后,便了解了这个题其中一个解法,下面小编将会讲述这个题目的大致思路:

 

1.2.题目的解题思路

  解决这个题目的思路类似倒数据,但是此时与上个题不一样的是,这里两个栈是分工明确的,我们可以让其中一个栈作为储存元素的,一个栈是用来进行出队列,取队头元素的;我们在使用队列实现栈的时候,两个队列是不确定的,有时候一个空一个不空,有时候一个不空另一个空,这么做是为了考虑各自的结构,栈是半封闭式,所以当我们想要删除队头元素的时候,我们仅需把那个储存数据的栈里面的数据通过提供栈顶元素之后出栈的方式,循环放入到另一个栈中,此时我们就可以发现第二个栈的元素和原来第一个栈的元素是倒置的,此时我们直接让第二个栈的元素出栈,这么做就可以实现出队列操作,因为出队列出的就是第一个,而我们将第一个栈的元素放入第二个栈以后,此时第一个栈的栈底元素就是第二个栈的栈顶元素,即进入栈的第一个因素,所以此时我们就可以实现出栈操作,而这也是小编为什么会讲两个栈的功能固定住,此时我们就实现了出队列操作,此时我们在现简单说一下队列每个功能的实现,对于入队列操作,我们直接把元素放入第一个栈就好;对于出队列操作,首先需要检测一下第二个栈是否有元素,如果有元素直接出栈就好,没有的话上面也说了,把第一个栈的元素循环放入第二个栈然后出栈;对于取栈顶元素,此时就和出队列是类似的,只不过我们直接返回第二个栈的栈顶元素就好了;至于初始化和销毁小编会在等会教写代码的时候说的,此时我们已经完成了队列的所有功能,可能很多读者朋友和我一样,光知道思路,但是代码不会写,下面小编将会讲述队列的功能如何用代码实现~

1.3.队列的功能实现

  再讲解功能之前,我们首先需要写出这个队列的结构体,其实这个在小编在上面写解题思路就有体现,我们需要准备两个栈,分别是用来存储数据和消除数据的,其代码如下:

typedef struct {ST q1;  //存放数据的ST q2;  //进行出队列或者取队头操作的
} MyQueue;
 1.3.1.队列的初始化(MyQueue* myQueueCreate()) 

  我们在写队列的时候肯定有初始化操作,首先我们需要先注意它的返回值,它的返回值是结构体指针,旨在说明我们需要创建一个队列指针,此时就要涉及动态内存的开辟了,我们需要开辟一个大小为结构体类型的变量的指针,在我们创建好以后,我们就要对里面的内容进行初始化,这时候我们仅需调用它们各自的初始化函数就好了,此时我们已经完成了初始化操作,我们直接返回这个指针即可,代码如下所示:

MyQueue* myQueueCreate() {MyQueue* pq = (MyQueue*)malloc(sizeof(MyQueue));STInit(&pq -> q1);STInit(&pq -> q2);return pq;
}
 1.3.2.入队列操作(void myQueuePush(MyQueue* obj, int x) 

  入队列操作其实是很简单就可以实现的,此时我们讲我们想要的数据直接放入第一个栈就好,我们仅需调用一下入栈操作,把元素放入第一个栈即可,此时我们就实现了入队列操作,代码如下所示:

void myQueuePush(MyQueue* obj, int x) {STPush(&obj -> q1,x);
}
 1.3.3.判断队列是否为空(myQueueEmpty(MyQueue* obj)) 

  我们在进行出队列操作之前,我们需要去判断队列是否为空或者取队头数据的时候,如果为空的话我们就不可以再去进行出队列操作了,所以我们需要一个函数判断队列是否为空,此时队列为空的条件就是两个栈均为空,可能很多读者朋友要说,如果第二个栈就是空的,我们直接返回空不就好了,那样就大错特错了,还记着小编在上面的习题思路说过吗,对于出队列操作,我们首先需要判断第二个栈是否为空,如果第二个栈为空的话,我们直接把第一个栈的数据导入到第二个栈中,然后在出栈,所以第二个栈为空队列不一定就是空的,但如果第一个和第二个都是空的,那队列指定就是空的了,因为此时第一个栈就没元素倒入到第二个栈,第二个栈自然就无法实现出栈操作了,以上就是队列是否为空的实现,下面给予代码:

bool myQueueEmpty(MyQueue* obj) {return panduan(&obj -> q1) && panduan(&obj -> q2);
}
 1.3.4.出队列操作(int myQueuePop(MyQueue* obj)) 

  这个操作便是所有功能实现最为复杂的部分了,不过小编会将它简单化的教给大家,首先我们需要先判断队列是否为空的,之后我们需要先判断第二个栈是否为空,此时我们可以直接调用判断栈是否为空的函数来检查此时第二个栈是不是空的,如果不为空,我们先保存栈顶数据,然后进行出栈操作,返回栈顶元素就好了;如果为空,此时我们需要进行倒数据,我们需要把第一个栈的数据通过循环的方式倒入到第二个栈,然后在进行不为空情况的操作,此时循环的条件就是栈中元素的个数,当栈中的元素个数为0时,此时我们就实现了数据的倒入,之后我们在进行保存栈顶的元素,然后出栈操作,返回栈顶元素即可,以上就是此函数功能的实现,可能很多读者朋友还是不明白其中原理,小编通过图文进行解释,此时我们栈里面依次放入1,2,3,如下图所示:

  下面展示代码:

int myQueuePop(MyQueue* obj) {assert(!myQueueEmpty(obj));int size = STSize(&obj -> q1);if(STSize(&obj -> q2)){int b = STTop(&obj -> q2);STPop(&obj -> q2);return b;}//如果q2里面是空的,那么就执行下面操作while(size){int front = STTop(&obj -> q1);STPush(&obj -> q2,front);STPop(&obj -> q1);size--;}int c = STTop(&obj -> q2);STPop(&obj -> q2);return c;
}
 1.3.5.取队头操作(int myQueuePeek(MyQueue* obj))

  取队头操作其实是最简单的操作,当然是我建立在写完了出队列操作才说的,其实仔细看一看我们在写出队列操作的时候就已经展现出了取队头的操作,所以此时我们仅需把上面的代码复制下来,在把出队列操作删掉就好了,这便是这个操作的实现,是不是很简单,下面给出代码:

int myQueuePeek(MyQueue* obj) {assert(!myQueueEmpty(obj));int size = STSize(&obj -> q1);if(STSize(&obj -> q2)){int b = STTop(&obj -> q2);return b;}//如果q2里面是空的,那么就执行下面操作while(size){int front = STTop(&obj -> q1);STPush(&obj -> q2,front);STPop(&obj -> q1);size--;}int c = STTop(&obj -> q2);return c;
}
 1.3.6.销毁队列的操作(void myQueueFree(MyQueue* obj)) 

  销毁队列操作其实就是和上一篇写过的销毁栈操作是类似的,此时我们需要先把结构体里面的开辟出来的空间给释放掉,此时我们需要调用它们各自的销毁函数就好,操作结束后,由于此时的队列结构体也是开辟出来的,我们也需要释放掉,然后把它指向空就好,养成良好的习惯,减少野指针,这便是销毁操作的实现,下面给出代码:

void myQueueFree(MyQueue* obj) {STDestroy(&obj -> q1);STDestroy(&obj -> q2);free(obj);obj = NULL;
}

  以上便就是此队列所有结构函数的实现,现在肯定有很多读者朋友想要知道完整的代码怎么去写,下面小编就给出完整的代码:

1.4.代码展示

typedef int STDataType;
typedef struct Strak {STDataType* arr;   //存放的数据int caoticity;  //总空间大小int top;
}ST;void STInit(ST* ps)
{ps->arr = NULL;ps->caoticity = ps->top = 0;
}void STDestroy(ST* ps)
{if (ps->arr){free(ps -> arr);}ps->arr = NULL;ps->caoticity = ps->top = 0;
}void STPush(ST* ps, STDataType x)
{assert(ps);if (ps->caoticity == ps->top){int newcaseasd = ps->caoticity == 0 ? 4 : 2 * ps->caoticity;STDataType* arr1 = (STDataType*)realloc(ps->arr, sizeof(STDataType) * newcaseasd);assert(arr1);ps->caoticity = newcaseasd;ps->arr = arr1;}//空间满了就进行扩容操作ps->arr[ps->top++] = x;
}bool panduan(ST * ps)
{assert(ps);return ps->top == 0;
}
void STPop(ST* ps)
{assert(ps);assert(!panduan(ps));ps->top--;
}STDataType STTop(ST* ps)
{assert(ps);assert(!panduan(ps));return ps->arr[ps -> top - 1];
}int STSize(ST* ps)
{return ps->top;
}typedef struct {ST q1;  //存放数据的ST q2;  //进行出队列或者取队头操作的
} MyQueue;MyQueue* myQueueCreate() {MyQueue* pq = (MyQueue*)malloc(sizeof(MyQueue));STInit(&pq -> q1);STInit(&pq -> q2);return pq;
}bool myQueueEmpty(MyQueue* obj) {return panduan(&obj -> q1) && panduan(&obj -> q2);
}void myQueuePush(MyQueue* obj, int x) {STPush(&obj -> q1,x);
}int myQueuePop(MyQueue* obj) {assert(!myQueueEmpty(obj));int size = STSize(&obj -> q1);if(STSize(&obj -> q2)){int b = STTop(&obj -> q2);STPop(&obj -> q2);return b;}//如果q2里面是空的,那么就执行下面操作while(size){int front = STTop(&obj -> q1);STPush(&obj -> q2,front);STPop(&obj -> q1);size--;}int c = STTop(&obj -> q2);STPop(&obj -> q2);return c;
}int myQueuePeek(MyQueue* obj) {assert(!myQueueEmpty(obj));int size = STSize(&obj -> q1);if(STSize(&obj -> q2)){int b = STTop(&obj -> q2);return b;}//如果q2里面是空的,那么就执行下面操作while(size){int front = STTop(&obj -> q1);STPush(&obj -> q2,front);STPop(&obj -> q1);size--;}int c = STTop(&obj -> q2);return c;
}void myQueueFree(MyQueue* obj) {STDestroy(&obj -> q1);STDestroy(&obj -> q2);free(obj);obj = NULL;
}

2.总结 

  以上便是此题目的讲解,这个题目也是非常重要的,各位读者朋友一定要好好的去理解这个题目的做法,可能后期小编写的C嘎嘎文章会再次涉及到这个知识,如果文章有错误,请各位在评论区指出,小编一定会及时的去回复和更正,那么,我们下一篇博客见啦!

这篇关于栈和队列的习题详解(3):用栈实现队列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141732

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础