线性代数|机器学习-P33卷积神经网络ImageNet和卷积规则

本文主要是介绍线性代数|机器学习-P33卷积神经网络ImageNet和卷积规则,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. ImageNet
  • 2. 卷积计算
    • 2.1 两个多项式卷积
    • 2.2 函数卷积
    • 2.3 循环卷积
  • 3. 周期循环矩阵和非周期循环矩阵
  • 4. 循环卷积特征值
    • 4.1 卷积计算的分解
    • 4.2 运算量
    • 4.3 二维卷积公式
  • 5. Kronecker Product

1. ImageNet

ImageNet 的论文paper链接如下:详细请直接阅读相关论文即可
通过网盘分享的文件:imagenet_cvpr09.pdf
链接: https://pan.baidu.com/s/1Rkb6S5RbCHZUBrgUCIv0FA?pwd=6ffn 提取码: 6ffn

  • 涉及到的知识点:
    – drop-out–防止神经网络过拟合
    – 正则化-- 方便数据训练

2. 卷积计算

2.1 两个多项式卷积

教授讲得通用公式听起来糊里糊涂的,就以简单的实际案例来解释吧!
假设我们有两个多项式表示如下:
P ( x ) = 1 + 2 x + 3 x 2 ; Q ( x ) = 4 + 5 x ; H ( x ) = P ( x ) Q ( x ) \begin{equation} P(x)=1+2x+3x^2;Q(x)=4+5x;H(x)=P(x)Q(x) \end{equation} P(x)=1+2x+3x2;Q(x)=4+5x;H(x)=P(x)Q(x)

  • 两个多项式相乘后展开可得结果如下:
    P ( x ) = 1 + 2 x + 3 x 2 ; Q ( x ) = 4 + 5 x ; H ( x ) = P ( x ) Q ( x ) \begin{equation} P(x)=1+2x+3x^2;Q(x)=4+5x;H(x)=P(x)Q(x) \end{equation} P(x)=1+2x+3x2;Q(x)=4+5x;H(x)=P(x)Q(x)
    H ( x ) = 4 + 13 x + 22 x 2 + 15 x 3 \begin{equation} H(x)=4+13x+22x^2+15x^3 \end{equation} H(x)=4+13x+22x2+15x3
  • 那么我们是否可以根据卷积的形式直接算出来了?
    P ( x ) : p = [ 1 , 2 , 3 ] , Q ( x ) : q = [ 4 , 5 , 0 ] \begin{equation} P(x):p=[1,2,3],Q(x):q=[4,5,0] \end{equation} P(x):p=[1,2,3],Q(x):q=[4,5,0]
  • 那么两个序列卷积如下 ,可得,
    多项式的乘积等同于其系数的卷积,多项式乘法可以看作是序列卷积的一个具体应用
    在这里插入图片描述

2.2 函数卷积

函数卷积定义:若 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)有界且可积,以为函数卷积连续形式如下:
K ( x ) = f ( x ) ∗ g ( x ) = ∫ − ∞ + ∞ f ( t ) g ( x − t ) d t \begin{equation} K(x)=f(x)*g(x)=\int_{-\infty}^{+\infty}f(t)g(x-t)\mathrm{dt} \end{equation} K(x)=f(x)g(x)=+f(t)g(xt)dt

2.3 循环卷积

具体参考上节笔记
线性代数|机器学习-P32循环矩阵的特征向量-傅里叶矩阵

3. 周期循环矩阵和非周期循环矩阵

  • Toeplitz Matrix :
    对于非周期循环矩阵来说,我们用托普利兹矩阵Toeplitz Matrix 表示,主要特点为斜对角值相等,但不循环
  • Circulant Matrix;
    对于周期循环矩阵来说,我们用循环矩阵Circulant Matrix 表示,主要特点为斜对角值相等,并且元素循环,也是循环卷积矩阵,根据上节课学习可得,任意一个循环卷积矩阵C都可以是位移矩阵P的线性组合,并且矩阵P的特征向量为傅里叶矩阵。

在这里插入图片描述

  • 周期循环矩阵C的特征向量为傅里叶矩阵,以4阶举例可得:
    C = c 0 + c 1 P + c 2 P 2 + c 3 P 3 , P = [ 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 ] ; F 4 = [ 1 1 1 1 1 i i 2 i 3 1 i 2 i 4 i 6 1 i 3 i 6 i 9 ] \begin{equation} C=c_0+c_1P+c_2P^2+c_3P^3, P=\begin{bmatrix} 0&1&0&0\\\\ 0&0&1&0\\\\ 0&0&0&1\\\\ 1&0&0&0\end{bmatrix};F_4=\begin{bmatrix} 1&1&1&1\\\\ 1&i&i^2&i^3\\\\ 1&i^2&i^4&i^6\\\\ 1&i^3&i^6&i^9\end{bmatrix} \end{equation} C=c0+c1P+c2P2+c3P3,P= 0001100001000010 ;F4= 11111ii2i31i2i4i61i3i6i9
  • 循环矩阵C的特征值可以用傅里叶F表示:
    在这里插入图片描述

4. 循环卷积特征值

4.1 卷积计算的分解

在这里插入图片描述

  • 我们定义矩阵如下:
    C = [ c 0 c 1 c 1 c 0 ] ; D = [ d 0 d 1 d 1 d 0 ] ; F = [ 1 1 1 − 1 ] \begin{equation} C=\begin{bmatrix} c_0&c_1\\\\ c_1&c_0 \end{bmatrix};D=\begin{bmatrix} d_0&d_1\\\\ d_1&d_0 \end{bmatrix};F=\begin{bmatrix} 1&1\\\\ 1&-1 \end{bmatrix} \end{equation} C= c0c1c1c0 ;D= d0d1d1d0 ;F= 1111
    F c = [ c 0 + c 1 c 0 − c 1 ] ; F d = [ d 0 + d 1 d 0 − d 1 ] ; \begin{equation} Fc=\begin{bmatrix} c_0+c_1\\\\ c_0-c_1 \end{bmatrix};Fd=\begin{bmatrix} d_0+d_1\\\\ d_0-d_1 \end{bmatrix};\end{equation} Fc= c0+c1c0c1 ;Fd= d0+d1d0d1 ;
    ( F c ) . ∗ ( F d ) = [ ( c 0 + c 1 ) ( d 0 + d 1 ) ( c 0 − c 1 ) ( d 0 − d 1 ) ] = [ c 0 d 0 + c 0 d 1 + c 1 d 0 + c 1 d 1 c 0 d 0 − c 0 d 1 − c 1 d 0 + c 1 d 1 ] ; \begin{equation} (Fc).* (Fd)=\begin{bmatrix} (c_0+c_1)(d_0+d_1)\\\\ (c_0-c_1)(d_0-d_1) \end{bmatrix}=\begin{bmatrix} c_0d_0+c_0d_1+c_1d_0+c_1d_1\\\\ c_0d_0-c_0d_1-c_1d_0+c_1d_1 \end{bmatrix};\end{equation} (Fc).(Fd)= (c0+c1)(d0+d1)(c0c1)(d0d1) = c0d0+c0d1+c1d0+c1d1c0d0c0d1c1d0+c1d1 ;
    c ⊗ d = [ c 0 c 1 c 1 c 0 ] [ d 0 d 1 ] = [ c 0 d 0 + c 1 d 1 c 1 d 0 + c 0 d 1 ] ; \begin{equation} c\otimes d=\begin{bmatrix} c_0&c_1\\\\c_1&c_0 \end{bmatrix}\begin{bmatrix} d_0\\\\d_1 \end{bmatrix}=\begin{bmatrix} c_0d_0+c_1d_1\\\\c_1d_0+c_0d_1 \end{bmatrix};\end{equation} cd= c0c1c1c0 d0d1 = c0d0+c1d1c1d0+c0d1 ;
    F ( c ⊗ d ) = [ 1 1 1 − 1 ] [ c 0 d 0 + c 1 d 1 c 1 d 0 + c 0 d 1 ] = [ c 0 d 0 + c 1 d 1 + c 1 d 0 + c 0 d 1 c 0 d 0 + c 1 d 1 − c 1 d 0 − c 0 d 1 ] ; \begin{equation} F(c\otimes d)=\begin{bmatrix} 1&1\\\\1&-1 \end{bmatrix}\begin{bmatrix} c_0d_0+c_1d_1\\\\c_1d_0+c_0d_1 \end{bmatrix}=\begin{bmatrix} c_0d_0+c_1d_1+c_1d_0+c_0d_1\\\\c_0d_0+c_1d_1-c_1d_0-c_0d_1 \end{bmatrix};\end{equation} F(cd)= 1111 c0d0+c1d1c1d0+c0d1 = c0d0+c1d1+c1d0+c0d1c0d0+c1d1c1d0c0d1 ;
  • 小结卷积规则如下:

在这里插入图片描述

4.2 运算量

因为我们知道傅里叶变换中有一个大名鼎鼎的快速傅里叶变换的算法FFT,其运算复杂度为 N log ⁡ N N\log N NlogN

  • 方式一:对于先卷积后傅里叶变换的计算量如下:
    F ( c ⊗ d ) = N 2 + N log ⁡ N \begin{equation} F(c\otimes d)=N^2+N\log N\end{equation} F(cd)=N2+NlogN
  • 方式二:先进行傅里叶变换后在点积的计算量如下:
    ( F c ) . ∗ ( F d ) = 2 N log ⁡ N + N \begin{equation} (Fc).* (Fd)=2N\log N+N\end{equation} (Fc).(Fd)=2NlogN+N
  • 当N=1024时,可得:
    F ( c ⊗ d ) ( F c ) . ∗ ( F d ) = 1024 + 10 2 ∗ 10 + 1 = 49.238 \begin{equation} \frac{F(c\otimes d)}{(Fc).* (Fd)}=\frac{1024+10}{2*10+1}=49.238\end{equation} (Fc).(Fd)F(cd)=210+11024+10=49.238
  • 简单来说,对于同样的卷积计算来说,我们选择方式二,如果把数列先进行傅里叶变换,再将序列点乘,得到的计算量在N=1024情况下,方式一的计算量居然是方式二的接近50倍。简直令人发指!!!所以我们需要拥抱FFT快速傅里叶变换,将数据的处理换一种方式进行,这样可以大大提高程序运行的速度!!!真是伟大的傅里叶!!!

4.3 二维卷积公式

假设我们有两个函数 f ( x , y ) , g ( x , y ) f(x,y),g(x,y) f(x,y),g(x,y),它们的二维卷积公式如下:
h ( x , y ) = f ( x , y ) ∗ g ( x , y ) = ∫ ∞ ∫ ∞ f ( u , v ) g ( x − u , y − v ) d u d v \begin{equation} h(x,y)=f(x,y)*g(x,y)=\int^{\infty}\int^{\infty}f(u,v)g(x-u,y-v)\mathrm{du}\mathrm{dv}\end{equation} h(x,y)=f(x,y)g(x,y)=f(u,v)g(xu,yv)dudv

5. Kronecker Product

  • Kronecker Product 介绍:
    在这里插入图片描述
  • 举例介绍:
    A = [ 1 2 3 4 ] ; B = [ 0 5 6 7 ] \begin{equation} A=\begin{bmatrix}1&2\\\\3&4\end{bmatrix};B=\begin{bmatrix}0&5\\\\6&7\end{bmatrix}\end{equation} A= 1324 ;B= 0657
    A ⊗ B = [ 1 ⋅ B 2 ⋅ B 3 ⋅ B 4 ⋅ B ] = [ 0 5 0 10 6 7 12 14 0 15 0 20 18 21 24 28 ] \begin{equation} A\otimes B=\begin{bmatrix}1\cdot B&2\cdot B\\\\3\cdot B&4\cdot B\end{bmatrix}= \begin{bmatrix} 0&5&0&10\\\\ 6&7&12&14\\\\ 0&15&0&20\\\\ 18&21&24&28 \end{bmatrix}\end{equation} AB= 1B3B2B4B = 0601857152101202410142028

这篇关于线性代数|机器学习-P33卷积神经网络ImageNet和卷积规则的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141548

相关文章

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Nginx路由匹配规则及优先级详解

《Nginx路由匹配规则及优先级详解》Nginx作为一个高性能的Web服务器和反向代理服务器,广泛用于负载均衡、请求转发等场景,在配置Nginx时,路由匹配规则是非常重要的概念,本文将详细介绍Ngin... 目录引言一、 Nginx的路由匹配规则概述二、 Nginx的路由匹配规则类型2.1 精确匹配(=)2

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Nginx location匹配模式与规则详解

《Nginxlocation匹配模式与规则详解》:本文主要介绍Nginxlocation匹配模式与规则,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、环境二、匹配模式1. 精准模式2. 前缀模式(不继续匹配正则)3. 前缀模式(继续匹配正则)4. 正则模式(大

详解nginx 中location和 proxy_pass的匹配规则

《详解nginx中location和proxy_pass的匹配规则》location是Nginx中用来匹配客户端请求URI的指令,决定如何处理特定路径的请求,它定义了请求的路由规则,后续的配置(如... 目录location 的作用语法示例:location /www.chinasem.cntestproxy

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx