逻辑回归-损失函数详解

2024-09-06 06:38

本文主要是介绍逻辑回归-损失函数详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有监督学习

机器学习分为有监督学习,无监督学习,半监督学习,强化学习。对于逻辑回归来说,就是一种典型的有监督学习。 
既然是有监督学习,训练集自然可以用如下方式表述: 

{(x1,y1),(x2,y2),,(xm,ym)}

对于这m个训练样本,每个样本本身有n维特征。再加上一个偏置项 x0 , 则每个样本包含n+1维特征: 

x=[x0,x1,x2,,xn]T

其中  xRn+1 x0=1 y{0,1}

李航博士在统计学习方法一书中给分类问题做了如下定义: 
分类是监督学习的一个核心问题,在监督学习中,当输出变量Y取有限个离散值时,预测问题便成为分类问题。这时,输入变量X可以是离散的,也可以是连续的。监督学习从数据中学习一个分类模型或分类决策函数,称为分类器(classifier)。分类器对新的输入进行输出的预测(prediction),称为分类(classification).

在logistic回归详解一(http://blog.csdn.net/bitcarmanlee/article/details/51154481)中,我们花了一整篇篇幅阐述了为什么要使用logistic函数:

hθ(x)=g(θTx)=11+eθTx

其中一个重要的原因,就是要将Hypothesis(NG课程里的说法)的输出映射到0与1之间,既: 
0hθ(x)1

同样是李航博士统计学习方法一书中,有以下描述: 
统计学习方法都是由模型,策略,和算法构成的,即统计学习方法由三要素构成,可以简单表示为: 

=++

对于logistic回归来说,模型自然就是logistic回归,策略最常用的方法是用一个损失函数(loss function)或代价函数(cost function)来度量预测错误程度,算法则是求解过程,后期会详细描述相关的优化算法。

logistic函数求导

g(z)=ddz11+ez=1(1+ez)2(ez)=1(1+ez)(11(1+ez))=g(z)(1g(z))

此求导公式在后续推导中会使用到

常见的损失函数

机器学习或者统计机器学习常见的损失函数如下:

1.0-1损失函数 (0-1 loss function) 

L(Y,f(X))={1,0, f(X)Y = f(X)

2.平方损失函数(quadratic loss function) 

L(Y,f(X))=(Yf(x))2

3.绝对值损失函数(absolute loss function) 

L(Y,f(x))=|Yf(X)|

4.对数损失函数(logarithmic loss function) 或对数似然损失函数(log-likehood loss function) 

L(Y,P(Y|X))=logP(Y|X)

逻辑回归中,采用的则是对数损失函数。如果损失函数越小,表示模型越好。

说说对数损失函数与平方损失函数

在逻辑回归的推导中国,我们假设样本是服从伯努利分布(0-1分布)的,然后求得满足该分布的似然函数,最终求该似然函数的极大值。整体的思想就是求极大似然函数的思想。而取对数,只是为了方便我们的在求MLE(Maximum Likelihood Estimation)过程中采取的一种数学手段而已。

损失函数详解

根据上面的内容,我们可以得到逻辑回归的对数似然损失函数cost function: 

cost(hθ(x),y)={log(hθ(x))log(1hθ(x))if y=1if y=0

稍微解释下这个损失函数,或者说解释下对数似然损失函数: 
当y=1时,假定这个样本为正类。如果此时 hθ(x)=1 ,则单对这个样本而言的cost=0,表示这个样本的预测完全准确。那如果所有样本都预测准确,总的cost=0 
但是如果此时预测的概率 hθ(x)=0 ,那么 cost 。直观解释的话,由于此时样本为一个正样本,但是预测的结果 P(y=1|x;θ)=0 , 也就是说预测 y=1的概率为0,那么此时就要对损失函数加一个很大的惩罚项。 
当y=0时,推理过程跟上述完全一致,不再累赘。

将以上两个表达式合并为一个,则单个样本的损失函数可以描述为: 

cost(hθ(x),y)=yilog(hθ(x))(1yi)log(1hθ(x))

因为  yi  只有两种取值情况,1或0,分别令y=1或y=0,即可得到原来的分段表示式。

全体样本的损失函数可以表示为: 

cost(hθ(x),y)=i=1myilog(hθ(x))(1yi)log(1hθ(x))

这就是逻辑回归最终的损失函数表达式

这篇关于逻辑回归-损失函数详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141288

相关文章

MySQL中的分组和多表连接详解

《MySQL中的分组和多表连接详解》:本文主要介绍MySQL中的分组和多表连接的相关操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录mysql中的分组和多表连接一、MySQL的分组(group javascriptby )二、多表连接(表连接会产生大量的数据垃圾)MySQL中的

Java 实用工具类Spring 的 AnnotationUtils详解

《Java实用工具类Spring的AnnotationUtils详解》Spring框架提供了一个强大的注解工具类org.springframework.core.annotation.Annot... 目录前言一、AnnotationUtils 的常用方法二、常见应用场景三、与 JDK 原生注解 API 的

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指