Leetcode 72. 编辑距离 动态规划 优化 C++实现

2024-09-06 06:36

本文主要是介绍Leetcode 72. 编辑距离 动态规划 优化 C++实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Leetcode 72.编辑距离

问题:给你两个单词 word1  word2, 请返回将 word1 转换成 word2 所使用的最少操作数  。

你可以对一个单词进行如下三种操作:插入一个字符,删除一个字符,替换一个字符。

算法1:递归搜索 + 保存计算结果 = 记忆化搜索

        创建 memo 数组,并赋初始值为 -1,表示还没有被计算过。

        进入 dfs 函数。引用 memo 数组,如果这个字母已经被计算过了就 return memo 的值。有四种情况,两个字母相等,这个位置就不用操作,向前继续递归;如果不相等,可以插入字母、删除字母、替换字母,取操作数最小的一个。

        例如在 word1 中插入字母,那么这个位置的问题就解决了,这个时候要让 word2 的指针前移,继续递归。如果在 word1 中删除字母,那么就要将 word1 的指针前移。如果替换字母,就让 word1 word2 的指针同时前移。

        dfs 中前两行代码表示的意思是,如果在递归过程中出现了 i 或者 j 小于 0 的情况,即 word1 或者 word2 已经遍历完了,那么另一个没有被遍历完的 word 剩余的字母个数就是 j + 1 或者 i + 1 ,这个时候直接 return j + 1 或者 i + 1 即可。

代码:

class Solution {
public:int minDistance(string word1, string word2) {int n = word1.length(), m = word2.length();vector<vector<int>> memo(n, vector<int>(m, -1)); // -1 表示还没有计算过auto dfs = [&](auto&& dfs, int i, int j) -> int {if (i < 0)    return j + 1;if (j < 0)    return i + 1;int& res = memo[i][j]; // 注意这里是引用if (res != -1)    return res; // 之前算过了if (word1[i] == word2[j])   return res = dfs(dfs, i - 1, j - 1);return res = min(min(dfs(dfs, i - 1, j), dfs(dfs, i, j - 1)), dfs(dfs, i - 1, j - 1)) + 1;};return dfs(dfs, n - 1, m - 1); // 递归入口}
};

算法2:1:1 翻译成递推

        创建二维数组 dp ,并赋初始值 0 。初始化第 0 行第 0 列,先赋最大值,即当前位置可能出现的最大值。

        开始循环递推,如果 word1 当前字母与 word2 当前字母相等,则 这个位置的操作数 dp 就等于 dp 前一个格子的值。

代码:

class Solution {
public:int minDistance(string word1, string word2) {int n = word1.length(), m = word2.length();vector<vector<int>> dp(n + 1,vector<int>(m + 1));for(int j = 0;j <= m;j++)   dp[0][j] = j; // 初始化第0行for(int i = 0; i < n; i++){dp[i + 1][0] = i + 1; // 初始化第0列for(int j = 0;j < m;j++)dp[i + 1][j + 1] = word1[i] == word2[j] ? dp[i][j] : min(min(dp[i][j],dp[i + 1][j]),dp[i][j + 1]) + 1;}return dp[n][m];}
};

算法3:空间优化:两个数组(滚动数组)

        通过 算法2 可知,行列表我们只会用到 2 行,每次递推只会取它的上一个格子的值,所以可以利用循环数组,来有效降低空间复杂度。

代码:

class Solution {
public:int minDistance(string word1, string word2) {int n = word1.length(),m = word2.length();vector<vector<int>> dp(2,vector<int>(m + 1));for(int j = 0;j <= m;j++)   dp[0][j] = j;for(int i = 0;i < n;i++){dp[(i + 1) % 2][0] = i + 1;for(int j = 0;j < m;j++)     dp[(i + 1) % 2][j + 1] = word1[i] == word2[j] ? dp[i % 2][j] : min(min(dp[i % 2][j],dp[(i + 1) % 2][j]),dp[i % 2][j + 1]) + 1;}return dp[n % 2][m];}
};

算法3:空间优化:一个数组

        创建一维数组 dp 并赋初始值。

        dp [ 0 ] 相当于原来的 dp [ 0 ] [ ] ,通过内层循环每循环一次就通过 dp [ 0 ] 自增来实现 + 1

        pre 相当于 dp [ i + 1 ] [ j ] ;

        没更新的 dp[ j + 1] 相当于 dp [ i ] [ j + 1] ;

        dp[ j ] 相当于 dp [ i ] [ j ];

        更新后的 dp[ j + 1] 相当于 dp [ i + 1] [ j + 1]

代码:

class Solution {
public:int minDistance(string word1, string word2) {int m = word2.length();vector<int> dp(m + 1);for(int j = 0;j <= m;j++)   dp[j] = j; // iota(dp.begin(), dp.end(), 0);for(char x : word1){int pre = dp[0];dp[0]++; // 对应二维数组方法时行数向下移,即 dp[i+1][0] = i+1for(int j = 0;j < m;j++){int temp = dp[j + 1];dp[j + 1] = x == word2[j] ? pre : min(min(dp[j + 1],dp[j]),pre) + 1;pre = temp;}}return dp[m];}
};

这篇关于Leetcode 72. 编辑距离 动态规划 优化 C++实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141277

相关文章

C#如何调用C++库

《C#如何调用C++库》:本文主要介绍C#如何调用C++库方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录方法一:使用P/Invoke1. 导出C++函数2. 定义P/Invoke签名3. 调用C++函数方法二:使用C++/CLI作为桥接1. 创建C++/CL

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式