STM32G474之使用DAC1和DAC2测试模拟比较器

2024-09-06 05:44

本文主要是介绍STM32G474之使用DAC1和DAC2测试模拟比较器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

STM32G474使用DAC1和DAC2的输出作为比较器输入,测试模拟比较器,方法如下:
PA1的附加功能为COMP1_INP,无需映射,直接将它配置为模拟功能,就可以使用了。
将COMP1_OUT引脚映射到PA0;
采用DAC2_OUT1输出电压给COMP1_INP引脚,因此在测试时,需要将PA6和PA1短接。
采用DAC1_OUT1输出在内部连接到“比较器反向输入端”;
当DAC2_OUT1输出电压大于“VCC/2”时,开灯;
当DAC2_OUT1输出电压小于或等于“VCC/2”时,关灯;

1、比较器内部连接

如果我们不看表格,而是将DAC2_CH1连接到比较器1的反向输入端,那就大错特错了。

注意:在使用内部连接时,需要参考表“Table 197. COMPx inverting input assignment”。
随便连接,电路工作不正确
。 

STM32G474有3个DAC通道是带缓冲的外部通道 
PA4的附加功能为DAC1_OUT1,无需映射,直接将它配置为模拟功能,就可以使用了。
PA5的附加功能为DAC1_OUT2,无需映射,直接将它配置为模拟功能,就可以使用了。
PA6的附加功能为DAC2_OUT1,无需映射,直接将它配置为模拟功能,就可以使用了。

2、测试程序

COMP_HandleTypeDef hcomp1;
DAC_HandleTypeDef      DAC_1_Handler;
//DAC1句柄,若直接对寄存器DAC1->DHR12R1和DAC1->DHR12R2操作,就可以将其设置为局部变量

DAC_HandleTypeDef      DAC_2_Handler;
//DAC2句柄,若直接对寄存器DAC2->DHR12R1操作,就可以将其设置为局部变量

void COMP_Init(void)
{
    GPIO_InitTypeDef GPIO_InitStruct = {0};

    __HAL_RCC_SYSCFG_CLK_ENABLE();
    //RCC_APB2ENR寄存器bit0(SYSCFGEN),SYSCFGEN=1,使能SYSCFG + COMP + VREFBUF + OPAMP时钟
    __HAL_RCC_PWR_CLK_ENABLE();
    //RCC_APB1ENR1寄存器bit28(PWREN),PWREN=1,启用电源接口时钟
    __HAL_RCC_GPIOA_CLK_ENABLE();//开启GPIOA时钟

    GPIO_InitStruct.Pin = GPIO_PIN_1;            //选择引脚编号为1
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;     //模拟模式
    GPIO_InitStruct.Pull = GPIO_NOPULL;          //引脚上拉和下拉都没有被激活
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; //输出速度设置为5MHz
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    //根据GPIO_InitStruct结构变量指定的参数初始化GPIOA的外设寄存器
    //配置“比较器同向输入引脚”

    GPIO_InitStruct.Pin = GPIO_PIN_0;            //选择引脚编号为0
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;      //复用推挽模式
    GPIO_InitStruct.Pull = GPIO_NOPULL;          //引脚上拉和下拉都没有被激活
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; //输出速度设置为5MHz
    GPIO_InitStruct.Alternate = GPIO_AF8_COMP1;  //PA0映射到COMP1_OUT
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    //根据GPIO_InitStruct结构变量指定的参数初始化GPIOA的外设寄存器
    //配置“比较器输出引脚”

  hcomp1.Instance = COMP1;
  hcomp1.Init.InputPlus = COMP_INPUT_PLUS_IO1;
    //配置“比较器同向输入信号Vin+”来自PA1引脚
  hcomp1.Init.InputMinus = COMP_INPUT_MINUS_DAC2_CH1;
    //配置“比较器反向输入信号Vin-”来自“DAC2_CH1通道”
  hcomp1.Init.OutputPol = COMP_OUTPUTPOL_NONINVERTED;
    //配置比较器输出极性:当“Vin+ > Vin-”,则输出高电平
  hcomp1.Init.Hysteresis = COMP_HYSTERESIS_NONE;
    //Set comparator hysteresis mode of the input minus
  hcomp1.Init.BlankingSrce = COMP_BLANKINGSRC_NONE;
  hcomp1.Init.TriggerMode = COMP_TRIGGERMODE_NONE;
  HAL_COMP_Init(&hcomp1);

    __HAL_COMP_ENABLE(&hcomp1);
    //使能比较器
    //COMP_CxCSR寄存器bit0(EN),EN=1表示使能比较器

    HAL_COMP_Start(&hcomp1);//启动COMP1,Start COMP1

    DAC1_Init();
    DAC2_Init();
}

void DAC1_Init(void)
{
    DAC_ChannelConfTypeDef DAC1_CH1;        //DAC通道参数相关结构体
    GPIO_InitTypeDef       GPIO_InitStruct; //IO口参数结构体

    __HAL_RCC_DAC1_CLK_ENABLE();  //使能DAC1时钟
    __HAL_RCC_GPIOA_CLK_ENABLE(); //开启GPIOA时钟

    GPIO_InitStruct.Pin   = GPIO_PIN_4;           //选择引脚编号为4
    GPIO_InitStruct.Mode  = GPIO_MODE_ANALOG;     //模拟模式
  GPIO_InitStruct.Pull  = GPIO_NOPULL;          //引脚上拉和下拉都没有被激活
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; //输出速度设置为25MHz至50MHz
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    //根据GPIO_InitStruct结构变量指定的参数初始化GPIOA的外设寄存器

    DAC_1_Handler.Instance = DAC1; //DAC1
    HAL_DAC_Init(&DAC_1_Handler);  //初始化DAC

    DAC1_CH1.DAC_HighFrequency     = DAC_HIGH_FREQUENCY_INTERFACE_MODE_ABOVE_160MHZ;
    //DAC时钟选择
  DAC1_CH1.DAC_DMADoubleDataMode = DISABLE; //双重数据模式(高带宽模式)关闭
  DAC1_CH1.DAC_SignedFormat      = DISABLE; //有符号模式关闭
  DAC1_CH1.DAC_SampleAndHold     = DAC_SAMPLEANDHOLD_DISABLE; //关闭采样保持
  DAC1_CH1.DAC_Trigger           = DAC_TRIGGER_NONE;          //不需要外部触发
    DAC1_CH1.DAC_Trigger2          = DAC_TRIGGER_NONE;          //不需要外部触发
  DAC1_CH1.DAC_OutputBuffer      = DAC_OUTPUTBUFFER_ENABLE;   //DAC输出缓冲器打开
    DAC1_CH1.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_ENABLE;//允许内部连接DAC1_CH1
  DAC1_CH1.DAC_UserTrimming      = DAC_TRIMMING_FACTORY;      //工厂矫正模式
  HAL_DAC_ConfigChannel(&DAC_1_Handler, &DAC1_CH1, DAC_CHANNEL_1);   //初始化
  HAL_DACEx_SelfCalibrate(&DAC_1_Handler, &DAC1_CH1, DAC_CHANNEL_1); //矫正
    HAL_DAC_Start(&DAC_1_Handler,DAC_CHANNEL_1); //开启DAC1通道1                  
    
//    HAL_DAC_SetValue(&DAC_1_Handler,DAC_CHANNEL_1,DAC_ALIGN_12B_R,2048);
    //设置DAC输出电压: 2048*3.3/(0xFFF+1)=1.65V

    DAC1->DHR12R1=2048;
    //使用寄存器器,直接设置DAC输出电压: 2048*3.3/(0xFFF+1)=1.65V
}

void DAC2_Init(void)
{
    DAC_ChannelConfTypeDef DAC2_CH1;        //DAC通道参数相关结构体
    GPIO_InitTypeDef       GPIO_InitStruct; //IO口参数结构体

    __HAL_RCC_DAC2_CLK_ENABLE();  //使能DAC2时钟
    __HAL_RCC_GPIOA_CLK_ENABLE(); //开启GPIOA时钟

    GPIO_InitStruct.Pin   = GPIO_PIN_6;           //选择引脚编号为6
    GPIO_InitStruct.Mode  = GPIO_MODE_ANALOG;     //模拟模式
  GPIO_InitStruct.Pull  = GPIO_NOPULL;          //引脚上拉和下拉都没有被激活
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; //输出速度设置为25MHz至50MHz
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    //根据GPIO_InitStruct结构变量指定的参数初始化GPIOA的外设寄存器

    DAC_2_Handler.Instance = DAC2; //DAC2
    HAL_DAC_Init(&DAC_2_Handler);  //初始化DAC

    DAC2_CH1.DAC_HighFrequency     = DAC_HIGH_FREQUENCY_INTERFACE_MODE_ABOVE_160MHZ;
    //DAC时钟选择
  DAC2_CH1.DAC_DMADoubleDataMode = DISABLE; //双重数据模式(高带宽模式)关闭
  DAC2_CH1.DAC_SignedFormat      = DISABLE; //有符号模式关闭
  DAC2_CH1.DAC_SampleAndHold     = DAC_SAMPLEANDHOLD_DISABLE; //关闭采样保持
  DAC2_CH1.DAC_Trigger           = DAC_TRIGGER_NONE;          //不需要外部触发
    DAC2_CH1.DAC_Trigger2          = DAC_TRIGGER_NONE;          //不需要外部触发
  DAC2_CH1.DAC_OutputBuffer      = DAC_OUTPUTBUFFER_ENABLE;   //DAC输出缓冲器打开
    DAC2_CH1.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_DISABLE; //不允许内部连接DAC2_CH1
  DAC2_CH1.DAC_UserTrimming      = DAC_TRIMMING_FACTORY;      //工厂矫正模式  
  HAL_DAC_ConfigChannel(&DAC_2_Handler, &DAC2_CH1, DAC_CHANNEL_1);   //初始化
  HAL_DACEx_SelfCalibrate(&DAC_2_Handler, &DAC2_CH1, DAC_CHANNEL_1); //矫正
    HAL_DAC_Start(&DAC_2_Handler,DAC_CHANNEL_1); //开启DAC2通道1                  
    
    HAL_DAC_SetValue(&DAC_2_Handler,DAC_CHANNEL_1,DAC_ALIGN_12B_R,2048);
    //设置DAC输出电压: 2048*3.3/(0xFFF+1)=1.65V
//    DAC2->DHR12R1=2048;
    //使用寄存器器,直接设置DAC输出电压: 2048*3.3/(0xFFF+1)=1.65V

}

void Test_COMP(void)
{
    uint32_t dac_steps = 0UL;
    uint32_t dac_Value;

  while (1)
    {
        dac_Value=dac_steps*DAC_SAWTOOTH_STEPINC;
        printf("dac_Value=0x%X\r\n",dac_Value);
        HAL_DAC_SetValue(&DAC_2_Handler, DAC_CHANNEL_1,DAC_ALIGN_12B_R,dac_Value );
        HAL_DAC_SetValue(&DAC_1_Handler,DAC_CHANNEL_1,DAC_ALIGN_12B_R,2048);
        dac_steps++;
    if (dac_steps > DAC_SAWTOOTH_STEPS){ dac_steps = 0; }
        HAL_Delay(4);//延时4ms
        if (HAL_COMP_GetOutputLevel(&hcomp1) == COMP_OUTPUT_LEVEL_HIGH)
    {//COMP_CxCSR寄存器bit30(VALUE),VALUE=1表示比较器输出为高电平
      LED1_On();
    }
    else
    {
      LED1_Off();
    }
    }
}
 

comp.h文件如下:

#ifndef __COMP_H__
#define __COMP_H__#include "stm32g4xx_hal.h"
//使能int8_t,int16_t,int32_t,int64_t
//使能uint8_t,uint16_t,uint32_t,uint64_t#define DAC_VALUE_MAX         ((uint32_t) 4095)  //DAC的最大电压为4095*3.3/4096=3.299V
#define DAC_SAWTOOTH_STEPS    ((uint32_t) 45)    //DAC的总步数
#define DAC_SAWTOOTH_STEPINC  ( (uint32_t) DAC_VALUE_MAX/DAC_SAWTOOTH_STEPS )
//DAC每走1步的增量值extern void COMP_Init(void);
extern void Test_COMP(void);
#endif /*__ GPIO_H__ */

3、比较器输出波形

这篇关于STM32G474之使用DAC1和DAC2测试模拟比较器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141167

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他