python wordcloud模块

2024-09-06 03:32
文章标签 python 模块 wordcloud

本文主要是介绍python wordcloud模块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 参考:https://amueller.github.io/word_cloud/auto_examples/colored.html#colored-py
    wordcloud.WordCloud(font_path=None, width=400, height=200, margin=2, ranks_only=None, prefer_horizontal=0.9,mask=None, scale=1, color_func=None, max_words=200, min_font_size=4, stopwords=None, random_state=None,background_color=’black’, max_font_size=None, font_step=1,mode=’RGB’, relative_scaling=0.5, regexp=None, collocations=True,colormap=None, normalize_plurals=True)
参数:
font_path : string //字体路径,需要展现什么字体就把该字体路径+后缀名写上,如:font_path = '黑体.ttf'width : int (default=400) //输出的画布宽度,默认为400像素height : int (default=200) //输出的画布高度,默认为200像素prefer_horizontal : float (default=0.90) //词语水平方向排版出现的频率,默认 0.9 (所以词语垂直方向排版出现频率为 0.1 )mask : nd-array or None (default=None) //如果参数为空,则使用二维遮罩绘制词云。如果 mask 非空,设置的宽高值将被忽略,遮罩形状被 mask 取代。除全白(#FFFFFF)的部分将不会绘制,其余部分会用于绘制词云。如:bg_pic = imread('读取一张图片.png'),背景图片的画布一定要设置为白色(#FFFFFF),然后显示的形状为不是白色的其他颜色。可以用ps工具将自己要显示的形状复制到一个纯白色的画布上再保存,就ok了。scale : float (default=1) //按照比例进行放大画布,如设置为1.5,则长和宽都是原来画布的1.5倍。min_font_size : int (default=4) //显示的最小的字体大小font_step : int (default=1) //字体步长,如果步长大于1,会加快运算但是可能导致结果出现较大的误差。max_words : number (default=200) //要显示的词的最大个数stopwords : set of strings or None //设置需要屏蔽的词,如果为空,则使用内置的STOPWORDSbackground_color : color value (default=”black”) //背景颜色,如background_color='white',背景颜色为白色。max_font_size : int or None (default=None) //显示的最大的字体大小mode : string (default=”RGB”) //当参数为“RGBA”并且background_color不为空时,背景为透明。relative_scaling : float (default=.5) //词频和字体大小的关联性color_func : callable, default=None //生成新颜色的函数,如果为空,则使用 self.color_funcregexp : string or None (optional) //使用正则表达式分隔输入的文本collocations : bool, default=True //是否包括两个词的搭配colormap : string or matplotlib colormap, default=”viridis” //给每个单词随机分配颜色,若指定color_func,则忽略该方法。
方法:
fit_words(frequencies)  //根据词频生成词云
generate(text)  //根据文本生成词云
generate_from_frequencies(frequencies[, ...])   //根据词频生成词云
generate_from_text(text)    //根据文本生成词云
process_text(text)  //将长文本分词并去除屏蔽词(此处指英语,中文分词还是需要自己用别的库先行实现,使用上面的 fit_words(frequencies) )
recolor([random_state, color_func, colormap])   //对现有输出重新着色。重新上色会比重新生成整个词云快很多。
to_array()  //转化为 numpy array
to_file(filename)   //输出到文件

from os import path
from scipy.misc import imread
import matplotlib.pyplot as pltfrom wordcloud import WordCloud, STOPWORDS, ImageColorGenerator# 获取当前文件路径
# __file__ 为当前文件, 在ide中运行此行会报错,可改为
# d = path.dirname('.')
d = path.dirname(__file__)# 读取文本 alice.txt 在包文件的example目录下
#内容为
"""
Project Gutenberg's Alice's Adventures in Wonderland, by Lewis CarrollThis eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever.  You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.org
"""
text = open(path.join(d, 'alice.txt')).read()# read the mask / color image
# taken from http://jirkavinse.deviantart.com/art/quot-Real-Life-quot-Alice-282261010
# 设置背景图片
alice_coloring = imread(path.join(d, "alice_color.png"))wc = WordCloud(background_color="white", #背景颜色
max_words=2000,# 词云显示的最大词数
mask=alice_coloring,#设置背景图片
stopwords=STOPWORDS.add("said"),
max_font_size=40, #字体最大值
random_state=42)
# 生成词云, 可以用generate输入全部文本(中文不好分词),也可以我们计算好词频后使用generate_from_frequencies函数
wc.generate(text)
# wc.generate_from_frequencies(txt_freq)
# txt_freq例子为[('词a', 100),('词b', 90),('词c', 80)]
# 从背景图片生成颜色值
image_colors = ImageColorGenerator(alice_coloring)# 以下代码显示图片
plt.imshow(wc)
plt.axis("off")
# 绘制词云
plt.figure()
# recolor wordcloud and show
# we could also give color_func=image_colors directly in the constructor
plt.imshow(wc.recolor(color_func=image_colors))
plt.axis("off")
# 绘制背景图片为颜色的图片
plt.figure()
plt.imshow(alice_coloring, cmap=plt.cm.gray)
plt.axis("off")
plt.show()
# 保存图片
wc.to_file(path.join(d, "名称.png"))

这里写图片描述
这里写图片描述

#!/usr/bin/env python
"""
Masked wordcloud
================Using a mask you can generate wordclouds in arbitrary shapes.
"""from os import path
from PIL import Image
import numpy as np
import matplotlib.pyplot as pltfrom wordcloud import WordCloud, STOPWORDSd = path.dirname(__file__)# Read the whole text.
text = open(path.join(d, 'alice.txt')).read()# read the mask image
# taken from
# http://www.stencilry.org/stencils/movies/alice%20in%20wonderland/255fk.jpg
alice_mask = np.array(Image.open(path.join(d, "alice_mask.png")))stopwords = set(STOPWORDS)
stopwords.add("said")wc = WordCloud(background_color="white", max_words=2000, mask=alice_mask,stopwords=stopwords)
# generate word cloud
wc.generate(text)# store to file
wc.to_file(path.join(d, "alice.png"))# show
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")
plt.figure()
plt.imshow(alice_mask, cmap=plt.cm.gray, interpolation='bilinear')
plt.axis("off")
plt.show()
#coding:utf-8  
from os import path  
from scipy.misc import imread  
import matplotlib.pyplot as plt  
import jieba  from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator  stopwords = {}  
def importStopword(filename=''):  global stopwords  f = open(filename, 'r', encoding='utf-8')  line = f.readline().rstrip()  while line:  stopwords.setdefault(line, 0)  stopwords[line] = 1  line = f.readline().rstrip()  f.close()  def processChinese(text):  seg_generator = jieba.cut(text)  # 使用结巴分词,也可以不使用  seg_list = [i for i in seg_generator if i not in stopwords]  seg_list = [i for i in seg_list if i != u' ']  seg_list = r' '.join(seg_list)  return seg_list  importStopword(filename='./stopwords.txt')  # 获取当前文件路径  
# __file__ 为当前文件, 在ide中运行此行会报错,可改为  
# d = path.dirname('.')  
d = path.dirname(__file__)  text = open(path.join(d, 'love.txt'),encoding ='utf-8').read()  #如果是中文  
#text = processChinese(text)#中文不好分词,使用Jieba分词进行  # read the mask / color image  
# taken from http://jirkavinse.deviantart.com/art/quot-Real-Life-quot-Alice-282261010  
# 设置背景图片  
back_coloring = imread(path.join(d, "./image/love.jpg"))  wc = WordCloud( font_path='./font/cabin-sketch.bold.ttf',#设置字体  background_color="black", #背景颜色  max_words=2000,# 词云显示的最大词数  mask=back_coloring,#设置背景图片  max_font_size=100, #字体最大值  random_state=42,  )  
# 生成词云, 可以用generate输入全部文本(中文不好分词),也可以我们计算好词频后使用generate_from_frequencies函数  
wc.generate(text)  
# wc.generate_from_frequencies(txt_freq)  
# txt_freq例子为[('词a', 100),('词b', 90),('词c', 80)]  
# 从背景图片生成颜色值  
image_colors = ImageColorGenerator(back_coloring)  plt.figure()  
# 以下代码显示图片  
plt.imshow(wc)  
plt.axis("off")  
plt.show()  
# 绘制词云  # 保存图片  
wc.to_file(path.join(d, "名称.png"))  

这篇关于python wordcloud模块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140873

相关文章

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re