Python线程 适合I/O处理以及涉及阻塞操作的并发执行任务,不适合计算密集型

本文主要是介绍Python线程 适合I/O处理以及涉及阻塞操作的并发执行任务,不适合计算密集型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 为什么这种情况适合 I/O 和阻塞操作?
    • 1. I/O 操作和阻塞操作的特点:
      • I/O 操作:
      • 阻塞操作:
    • 2. GIL 对计算密集型任务的影响:
      • 计算密集型任务:
      • GIL 的限制:
    • 3. I/O 和阻塞操作的优势:
      • I/O 操作的非 CPU 密集性:
      • 多线程的并发性:
    • 具体示例:
      • 计算密集型任务:
      • I/O 密集型任务:
    • 总结:

全局解释器锁(Global Interpreter Lock,GIL)是 Python 解释器的一种机制,它确保在任意时刻只有一个线程在执行 Python 字节码。这意味着即使在多核处理器上,Python 线程也不能真正并行执行计算密集型任务,因为 GIL 限制了同一时刻只能有一个线程在解释器中运行。

为什么这种情况适合 I/O 和阻塞操作?

1. I/O 操作和阻塞操作的特点:

I/O 操作:

包括文件读写、网络通信、数据库查询等,这些操作通常需要等待外部设备或系统的响应。

阻塞操作:

指的是程序在等待某些事件(如 I/O 完成、锁释放)时会暂停执行。

2. GIL 对计算密集型任务的影响:

计算密集型任务:

这些任务主要依赖 CPU 进行大量计算,如数值计算、图像处理等。

GIL 的限制:

由于 GIL 的存在,计算密集型任务在多线程环境下不能充分利用多核 CPU 的优势,因为同一时刻只有一个线程在执行 Python 代码。

3. I/O 和阻塞操作的优势:

I/O 操作的非 CPU 密集性:

I/O 操作主要依赖于外部设备的响应,而不是 CPU 的计算能力。在等待 I/O 完成的过程中,线程会被阻塞,释放 GIL,使其他线程可以运行。

多线程的并发性:

在多线程环境下,当一个线程等待 I/O 操作完成时,其他线程可以继续执行。这种并发性使得多线程在处理 I/O 密集型任务时非常高效。

具体示例:

计算密集型任务:

假设我们有一个计算密集型任务,如计算大量数字的平方和。在多线程环境下,由于 GIL 的存在,多个线程不能同时执行计算任务,导致性能提升有限。

import threadingdef compute():result = 0for i in range(1000000):result += i * iprint(result)threads = []
for _ in range(4):thread = threading.Thread(target=compute)threads.append(thread)thread.start()for thread in threads:thread.join()

I/O 密集型任务:

假设我们有一个 I/O 密集型任务,如从多个 URL 下载数据。在多线程环境下,当一个线程等待网络响应时,其他线程可以继续执行下载任务,从而提高效率。

import threading
import requestsdef download(url):response = requests.get(url)print(f"Downloaded {len(response.content)} bytes from {url}")urls = ['http://example.com','http://example.org','http://example.net','http://example.edu'
]threads = []
for url in urls:thread = threading.Thread(target=download, args=(url,))threads.append(thread)thread.start()for thread in threads:thread.join()

总结:

由于 GIL 的存在,Python 线程在处理计算密集型任务时无法充分利用多核 CPU 的优势,因此不适合用于计算密集型任务。然而,对于 I/O 密集型任务和涉及阻塞操作的任务,多线程可以在等待 I/O 完成时释放 GIL,使其他线程继续执行,从而提高并发性和效率。因此,Python 线程更适合用于处理 I/O 和阻塞操作。

这篇关于Python线程 适合I/O处理以及涉及阻塞操作的并发执行任务,不适合计算密集型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140111

相关文章

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-