Python线程 适合I/O处理以及涉及阻塞操作的并发执行任务,不适合计算密集型

本文主要是介绍Python线程 适合I/O处理以及涉及阻塞操作的并发执行任务,不适合计算密集型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 为什么这种情况适合 I/O 和阻塞操作?
    • 1. I/O 操作和阻塞操作的特点:
      • I/O 操作:
      • 阻塞操作:
    • 2. GIL 对计算密集型任务的影响:
      • 计算密集型任务:
      • GIL 的限制:
    • 3. I/O 和阻塞操作的优势:
      • I/O 操作的非 CPU 密集性:
      • 多线程的并发性:
    • 具体示例:
      • 计算密集型任务:
      • I/O 密集型任务:
    • 总结:

全局解释器锁(Global Interpreter Lock,GIL)是 Python 解释器的一种机制,它确保在任意时刻只有一个线程在执行 Python 字节码。这意味着即使在多核处理器上,Python 线程也不能真正并行执行计算密集型任务,因为 GIL 限制了同一时刻只能有一个线程在解释器中运行。

为什么这种情况适合 I/O 和阻塞操作?

1. I/O 操作和阻塞操作的特点:

I/O 操作:

包括文件读写、网络通信、数据库查询等,这些操作通常需要等待外部设备或系统的响应。

阻塞操作:

指的是程序在等待某些事件(如 I/O 完成、锁释放)时会暂停执行。

2. GIL 对计算密集型任务的影响:

计算密集型任务:

这些任务主要依赖 CPU 进行大量计算,如数值计算、图像处理等。

GIL 的限制:

由于 GIL 的存在,计算密集型任务在多线程环境下不能充分利用多核 CPU 的优势,因为同一时刻只有一个线程在执行 Python 代码。

3. I/O 和阻塞操作的优势:

I/O 操作的非 CPU 密集性:

I/O 操作主要依赖于外部设备的响应,而不是 CPU 的计算能力。在等待 I/O 完成的过程中,线程会被阻塞,释放 GIL,使其他线程可以运行。

多线程的并发性:

在多线程环境下,当一个线程等待 I/O 操作完成时,其他线程可以继续执行。这种并发性使得多线程在处理 I/O 密集型任务时非常高效。

具体示例:

计算密集型任务:

假设我们有一个计算密集型任务,如计算大量数字的平方和。在多线程环境下,由于 GIL 的存在,多个线程不能同时执行计算任务,导致性能提升有限。

import threadingdef compute():result = 0for i in range(1000000):result += i * iprint(result)threads = []
for _ in range(4):thread = threading.Thread(target=compute)threads.append(thread)thread.start()for thread in threads:thread.join()

I/O 密集型任务:

假设我们有一个 I/O 密集型任务,如从多个 URL 下载数据。在多线程环境下,当一个线程等待网络响应时,其他线程可以继续执行下载任务,从而提高效率。

import threading
import requestsdef download(url):response = requests.get(url)print(f"Downloaded {len(response.content)} bytes from {url}")urls = ['http://example.com','http://example.org','http://example.net','http://example.edu'
]threads = []
for url in urls:thread = threading.Thread(target=download, args=(url,))threads.append(thread)thread.start()for thread in threads:thread.join()

总结:

由于 GIL 的存在,Python 线程在处理计算密集型任务时无法充分利用多核 CPU 的优势,因此不适合用于计算密集型任务。然而,对于 I/O 密集型任务和涉及阻塞操作的任务,多线程可以在等待 I/O 完成时释放 GIL,使其他线程继续执行,从而提高并发性和效率。因此,Python 线程更适合用于处理 I/O 和阻塞操作。

这篇关于Python线程 适合I/O处理以及涉及阻塞操作的并发执行任务,不适合计算密集型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140111

相关文章

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可