力扣96-不同的二叉搜索树(Java详细题解)

2024-09-05 19:44

本文主要是介绍力扣96-不同的二叉搜索树(Java详细题解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:96. 不同的二叉搜索树 - 力扣(LeetCode)

前情提要:

因为本人最近都来刷dp类的题目所以该题就默认用dp方法来做。

dp五部曲。

1.确定dp数组和i下标的含义。

2.确定递推公式。

3.dp初始化。

4.确定dp的遍历顺序。

5.如果没有ac打印dp数组 利于debug。

每一个dp题目如果都用这五步分析清楚,那么这道题就能解出来了。

题目思路:

该题要求n个节点所组成的二叉搜索树有多少种。

首先我们得知道什么是二叉树搜索树。

二叉树搜索树首先是一个二叉树,即每一个节点最多只有俩个子节点,且左孩子的值都比父节点小,右孩子的值都比父节点大。

这是二叉树搜索的特性,一定要利用起来。

然后我们在运用递归五部曲来进行分析。

1.确定dp数组和i下标的含义。

dp[i] 就是 由i个节点构成的不相同的二叉搜索树的种数。

以下分析如果想不清楚,就来回想一下dp[i]的定义

2.确定递推公式。

确定递推公式之前,我们先找规律。

当n为1的时候有一棵树,n为2有两棵树,这个是很直观的。

在这里插入图片描述

在这里插入图片描述

来看看n为3的时候,有哪几种情况。
显然由有三种情况

当1为头结点的时候,其右子树有两个节点,看这两个节点的布局,是不是和 n 为2的时候两棵树的布局是一样的啊!

(可能有同学问了,这布局不一样啊,节点数值都不一样。别忘了我们就是求不同树的数量,并不用把搜索树都列出来,所以不用关心其具体数值的差异)

当3为头结点的时候,其左子树有两个节点,看这两个节点的布局,是不是和n为2的时候两棵树的布局也是一样的啊!

当2为头结点的时候,其左右子树都只有一个节点,布局是不是和n为1的时候只有一棵树的布局也是一样的啊!

发现到这里,其实我们就找到了重叠子问题了,其实也就是发现可以通过dp[1] 和 dp[2] 来推导出来dp[3]的某种方式。

思考到这里,这道题目就有眉目了。

dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

有2个元素的搜索树数量就是dp[2]。

有1个元素的搜索树数量就是dp[1]。

有0个元素的搜索树数量就是dp[0]。

所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]。

在这里插入图片描述

由此可得当i为3时,dp[3]的递推关系。

所以dp[i] += dp[ j - 1] * dp[ i - j];

j是指当j为根节点的情况。i为3时需要根节点i为 1,2,3的这些情况,所以我们需要一个j来遍历我们根节点小与等于i的这些情况。

那dp[j - 1]是什么呢,其实就是当j 为根节点时,他的左子树的情况,当j为根节点 他的左子树节点肯定比j小。即有j - 1个节点所构成的二叉搜索树的个数。

dp[i - j]就是他的右子树的情况,他的右子树肯定比j大,因为是用j来遍历i,所以他的右子树的节点就是[i - j]了。

这样我们就得到了递推公式。

3.dp初始化。

我们应该初始化dp[0]还是dp[1]或者dp[2]呢?

我们应该初始化dp[0] = 1。

为啥为1不为0呢?

我们看看dp数组的含义。dp[i] 就是 由i个节点构成的不相同的二叉搜索树的种数。

0个节点其实也是二叉搜索树,即空节点也是一种二叉搜索树,所以我们dp[0] = 1。

其实dp[1]可以由dp[0]来推出。当只有一个节点时,他的根节点只有为1一种情况,他的左右节点都为dp[0]所以dp[1] = dp[0] * dp[0] = 1。

4.确定dp的遍历顺序。

由递推公式,我们可以看出dp[i] 是需要dp[i - j]的,即先要确定[i - j],才能确定i。

所以我们的遍历顺序一定是要从前往后的。

5.如果没有ac打印dp数组 利于debug。

最后dp[i]模拟后情况就是这样,大家可以打印dp数组对着看看哪与你的不符。

在这里插入图片描述

分析完毕,我们来看看最终代码。

class Solution {public int numTrees(int n) {//递推要不断的找规律 最后确定递推公式//dp[i] 表示的就是i个节点所构成二叉搜索树的种树int [] dp = new int [n + 1];dp[0] = 1;for(int i = 1;i <= n;i ++){//这里面的j 其实就相等于当头节点为j的情况//等于它左子树的情况乘以右子树的情况for(int j = 1;j <= i ;j ++){dp[i] += dp[j - 1] * dp[i - j];}}return dp[n];}
}

怎么样,分析过程很复杂,而代码缺不超过20行,递推代码是不是很精简。

所以面对dp问题,我们要善于找规律,并按照动规五部曲走就好啦。

这一篇博客就到这了,如果你有什么疑问和想法可以打在评论区,或者私信我。

我很乐意为你解答。那么我们下篇再见!

这篇关于力扣96-不同的二叉搜索树(Java详细题解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139884

相关文章

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.