动态规划DP--背包问题

2024-09-05 19:36
文章标签 动态 规划 问题 dp 背包

本文主要是介绍动态规划DP--背包问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 0-1背包问题 -- 问题定义
    • 动态规划解法
    • 代码
    • 题目:分割等和子集
    • 题解

0-1背包问题 – 问题定义

在 0-1 背包问题中,给定一个背包的最大容量 W,以及 n 个物品,每个物品有两个属性:

  • 重量:第 i 个物品的重量为 wt[i]
  • 价值:第 i 个物品的价值为 val[i]

目标是选择若干个物品装入背包,使得在不超过背包最大容量 W 的前提下,装入背包的物品的总价值最大

注意:0-1 背包中的 “0-1” 指的是每个物品只能被选取一次(即要么选择该物品,要么不选,不存在把物品拆一半放入背包)。

这个0-1背包问题很经典。详情可以买本labuladong的算法笔记这本书看看,或者去网站看。

动态规划解法

背包问题无非就是状态 + 选择,状态转移方程比较特殊。

第一步:明确状态+选择
状态:只要给几个物品一个背包的容量限制,就形成了一个背包问题呀。所以状态有两个,就是背包的容量可选择的物品

选择:装进背包 or 不装进背包

框架:

for 状态1 in 状态1的所有取值:for 状态2 in 状态2的所有取值:for ...dp[状态1][状态2][...] = 择优(选择1,选择2...)

第二步:要明确 dp 数组的定义

  1. dp[i][w] 的定义

    • dp[i][w] 表示在考虑前 i 个物品时,当前背包容量为 w 的情况下可以获得的最大价值。
    • 注意:i 是从 1 开始计数的,意味着 i 对应的是第 i-1 个物品。
  2. 两种情况的状态转移

    • 如果不选第 i 个物品

      • 那么当前背包的最大价值等于不考虑第 i 个物品时的最大价值,即 dp[i][w] = dp[i-1][w]。这个值继承了前 i-1 个物品在背包容量为 w 时的最大价值。
    • 如果选第 i 个物品

      • 你可以将第 i 个物品装入背包,前提是当前背包的容量 w 要大于等于该物品的重量 wt[i-1]
      • 在这种情况下,当前物品的总价值应该等于第 i-1 个物品在容量为 w - wt[i-1] 时的最大价值,再加上该物品的价值 val[i-1]
      • 公式为:dp[i][w] = val[i-1] + dp[i-1][w - wt[i-1]]
// ①定义状态
int[][] dp[N+1][W+1]
// ②初始化状态 因为没有物品或者背包没有空间的时候,能装的最大价值就是 0
dp[0][..] = 0
dp[..][0] = 0
// ③状态转移方程
for i in [1..N]:for w in [1..W]:dp[i][w] = max(把物品 i 装进背包,不把物品 i 装进背包)
return dp[N][W]

代码

int knapsack(int W, int N, int[] wt, int[] val) {int N == wt.length;// 定义状态 dp[i][w] 表示: 对于前 i 个物品(从 1 开始计数),当前背包的容量为 w 时,这种情况下可以装下的最大价值是 dp[i][w]int[][] dp = new int[N + 1][W + 1];for (int i = 1; i <= N; i++) {for (int w = 1; w <= W; w++) {if (w - wt[i - 1] < 0) {// 这种情况下只能选择不装入背包dp[i][w] = dp[i - 1][w];} else {// 装入或者不装入背包,择优dp[i][w] = Math.max(dp[i - 1][w - wt[i-1]] + val[i-1], dp[i - 1][w]);}}}return dp[N][W];
}

题目:分割等和子集

原题链接: 分割等和子集
在这里插入图片描述

题解

方法1:

  • dp[i][j] = dp[i-1][j] || dp[i-1][j-nums[i-1]]:只要有一种情况成立,dp[i][j] 就为 true。即:
    • 要么不选第 i 个数(dp[i-1][j]true),则前 i-1 个数已经能够组成和为 j
    • 要么选择第 i 个数(dp[i-1][j-nums[i-1]]true),则前 i-1 个数能组成和为 j - nums[i-1],加上 nums[i-1] 就可以使总和为 j
 public boolean canPartition(int[] nums) {int sum = 0;for (int num : nums) sum += num;// 和为奇数时,不可能划分成两个和相等的集合if (sum % 2 != 0) return false;int target = sum / 2;// ①定义状态  dp[i][j] 表示前i个数中能否选出若干个  使得和为 j(j为背包容量)  则为true  否则falseboolean[][] dp = new boolean[nums.length + 1][target + 1];// ②初始化状态for (int i = 0; i <= nums.length; i++)dp[i][0] = true; // 背包容量为 0 时  不选任何物品就满足// ③状态转移for (int i = 1; i <= nums.length; i++) {for (int j = 1; j <= target; j++) {if (j - nums[i - 1] < 0) {// 背包容量不足,不能装入第 i 个物品dp[i][j] = dp[i - 1][j];} else {// 装入或不装入背包dp[i][j] = dp[i - 1][j] || dp[i - 1][j - nums[i - 1]];}}}return dp[nums.length][target];}

这段代码是一个典型的0-1 背包问题的解法,问题是:能否从数组 nums 中找到若干个数,使它们的和等于 target(即总和的一半)。其中 dp[i][j] 表示前 i 个数能否选出若干个数,使它们的和恰好为 j。现在解释这一行代码:

dp[i][j] = dp[i - 1][j] || dp[i - 1][j - nums[i - 1]];

方法2:
在每次状态转移时,dp[i][j] 只依赖于上一行的状态 dp[i-1][j] 和 dp[i-1][j - nums[i-1]],所以可以将其优化为一维数组 dp[j],从而减少空间复杂度。

在遍历数组时,我们从后向前更新 dp 数组。这样做可以避免同一轮中重复使用同一个元素,即确保每个元素只能使用一次。

public boolean canPartition(int[] nums) {// 计算数组总和int sum = 0;for (int num : nums) {sum += num;}// 如果总和为奇数,无法分成两个子集if (sum % 2 != 0) return false;// 目标和是总和的一半int target = sum / 2;// ①定义状态  dp[i] 表示是否可以选出若干个元素,使得和为 iboolean[] dp = new boolean[target + 1];// ②初始化状态dp[0] = true;// ③状态转移for (int i = 0; i < nums.length; i++) {for (int j = target; j >= 0; j--) {if (j - nums[i] >= 0) {dp[j] = dp[j] | dp[j - nums[i]];}}}return dp[target];
}

❤觉得有用的可以留个关注~~~❤

这篇关于动态规划DP--背包问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139868

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.