动态规划DP--背包问题

2024-09-05 19:36
文章标签 动态 规划 问题 dp 背包

本文主要是介绍动态规划DP--背包问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 0-1背包问题 -- 问题定义
    • 动态规划解法
    • 代码
    • 题目:分割等和子集
    • 题解

0-1背包问题 – 问题定义

在 0-1 背包问题中,给定一个背包的最大容量 W,以及 n 个物品,每个物品有两个属性:

  • 重量:第 i 个物品的重量为 wt[i]
  • 价值:第 i 个物品的价值为 val[i]

目标是选择若干个物品装入背包,使得在不超过背包最大容量 W 的前提下,装入背包的物品的总价值最大

注意:0-1 背包中的 “0-1” 指的是每个物品只能被选取一次(即要么选择该物品,要么不选,不存在把物品拆一半放入背包)。

这个0-1背包问题很经典。详情可以买本labuladong的算法笔记这本书看看,或者去网站看。

动态规划解法

背包问题无非就是状态 + 选择,状态转移方程比较特殊。

第一步:明确状态+选择
状态:只要给几个物品一个背包的容量限制,就形成了一个背包问题呀。所以状态有两个,就是背包的容量可选择的物品

选择:装进背包 or 不装进背包

框架:

for 状态1 in 状态1的所有取值:for 状态2 in 状态2的所有取值:for ...dp[状态1][状态2][...] = 择优(选择1,选择2...)

第二步:要明确 dp 数组的定义

  1. dp[i][w] 的定义

    • dp[i][w] 表示在考虑前 i 个物品时,当前背包容量为 w 的情况下可以获得的最大价值。
    • 注意:i 是从 1 开始计数的,意味着 i 对应的是第 i-1 个物品。
  2. 两种情况的状态转移

    • 如果不选第 i 个物品

      • 那么当前背包的最大价值等于不考虑第 i 个物品时的最大价值,即 dp[i][w] = dp[i-1][w]。这个值继承了前 i-1 个物品在背包容量为 w 时的最大价值。
    • 如果选第 i 个物品

      • 你可以将第 i 个物品装入背包,前提是当前背包的容量 w 要大于等于该物品的重量 wt[i-1]
      • 在这种情况下,当前物品的总价值应该等于第 i-1 个物品在容量为 w - wt[i-1] 时的最大价值,再加上该物品的价值 val[i-1]
      • 公式为:dp[i][w] = val[i-1] + dp[i-1][w - wt[i-1]]
// ①定义状态
int[][] dp[N+1][W+1]
// ②初始化状态 因为没有物品或者背包没有空间的时候,能装的最大价值就是 0
dp[0][..] = 0
dp[..][0] = 0
// ③状态转移方程
for i in [1..N]:for w in [1..W]:dp[i][w] = max(把物品 i 装进背包,不把物品 i 装进背包)
return dp[N][W]

代码

int knapsack(int W, int N, int[] wt, int[] val) {int N == wt.length;// 定义状态 dp[i][w] 表示: 对于前 i 个物品(从 1 开始计数),当前背包的容量为 w 时,这种情况下可以装下的最大价值是 dp[i][w]int[][] dp = new int[N + 1][W + 1];for (int i = 1; i <= N; i++) {for (int w = 1; w <= W; w++) {if (w - wt[i - 1] < 0) {// 这种情况下只能选择不装入背包dp[i][w] = dp[i - 1][w];} else {// 装入或者不装入背包,择优dp[i][w] = Math.max(dp[i - 1][w - wt[i-1]] + val[i-1], dp[i - 1][w]);}}}return dp[N][W];
}

题目:分割等和子集

原题链接: 分割等和子集
在这里插入图片描述

题解

方法1:

  • dp[i][j] = dp[i-1][j] || dp[i-1][j-nums[i-1]]:只要有一种情况成立,dp[i][j] 就为 true。即:
    • 要么不选第 i 个数(dp[i-1][j]true),则前 i-1 个数已经能够组成和为 j
    • 要么选择第 i 个数(dp[i-1][j-nums[i-1]]true),则前 i-1 个数能组成和为 j - nums[i-1],加上 nums[i-1] 就可以使总和为 j
 public boolean canPartition(int[] nums) {int sum = 0;for (int num : nums) sum += num;// 和为奇数时,不可能划分成两个和相等的集合if (sum % 2 != 0) return false;int target = sum / 2;// ①定义状态  dp[i][j] 表示前i个数中能否选出若干个  使得和为 j(j为背包容量)  则为true  否则falseboolean[][] dp = new boolean[nums.length + 1][target + 1];// ②初始化状态for (int i = 0; i <= nums.length; i++)dp[i][0] = true; // 背包容量为 0 时  不选任何物品就满足// ③状态转移for (int i = 1; i <= nums.length; i++) {for (int j = 1; j <= target; j++) {if (j - nums[i - 1] < 0) {// 背包容量不足,不能装入第 i 个物品dp[i][j] = dp[i - 1][j];} else {// 装入或不装入背包dp[i][j] = dp[i - 1][j] || dp[i - 1][j - nums[i - 1]];}}}return dp[nums.length][target];}

这段代码是一个典型的0-1 背包问题的解法,问题是:能否从数组 nums 中找到若干个数,使它们的和等于 target(即总和的一半)。其中 dp[i][j] 表示前 i 个数能否选出若干个数,使它们的和恰好为 j。现在解释这一行代码:

dp[i][j] = dp[i - 1][j] || dp[i - 1][j - nums[i - 1]];

方法2:
在每次状态转移时,dp[i][j] 只依赖于上一行的状态 dp[i-1][j] 和 dp[i-1][j - nums[i-1]],所以可以将其优化为一维数组 dp[j],从而减少空间复杂度。

在遍历数组时,我们从后向前更新 dp 数组。这样做可以避免同一轮中重复使用同一个元素,即确保每个元素只能使用一次。

public boolean canPartition(int[] nums) {// 计算数组总和int sum = 0;for (int num : nums) {sum += num;}// 如果总和为奇数,无法分成两个子集if (sum % 2 != 0) return false;// 目标和是总和的一半int target = sum / 2;// ①定义状态  dp[i] 表示是否可以选出若干个元素,使得和为 iboolean[] dp = new boolean[target + 1];// ②初始化状态dp[0] = true;// ③状态转移for (int i = 0; i < nums.length; i++) {for (int j = target; j >= 0; j--) {if (j - nums[i] >= 0) {dp[j] = dp[j] | dp[j - nums[i]];}}}return dp[target];
}

❤觉得有用的可以留个关注~~~❤

这篇关于动态规划DP--背包问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1139868

相关文章

电脑蓝牙连不上怎么办? 5 招教你轻松修复Mac蓝牙连接问题的技巧

《电脑蓝牙连不上怎么办?5招教你轻松修复Mac蓝牙连接问题的技巧》蓝牙连接问题是一些Mac用户经常遇到的常见问题之一,在本文章中,我们将提供一些有用的提示和技巧,帮助您解决可能出现的蓝牙连接问... 蓝牙作为一种流行的无线技术,已经成为我们连接各种设备的重要工具。在 MAC 上,你可以根据自己的需求,轻松地

Java 中的跨域问题解决方法

《Java中的跨域问题解决方法》跨域问题本质上是浏览器的一种安全机制,与Java本身无关,但Java后端开发者需要理解其来源以便正确解决,下面给大家介绍Java中的跨域问题解决方法,感兴趣的朋友一起... 目录1、Java 中跨域问题的来源1.1. 浏览器同源策略(Same-Origin Policy)1.

如何清理MySQL中的binlog问题

《如何清理MySQL中的binlog问题》:本文主要介绍清理MySQL中的binlog问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目http://www.chinasem.cn录清理mysql中的binlog1.查看binlog过期时间2. 修改binlog过期

如何解决yum无法安装epel-release的问题

《如何解决yum无法安装epel-release的问题》:本文主要介绍如何解决yum无法安装epel-release的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录yum无法安装epel-release尝试了第一种方法第二种方法(我就是用这种方法解决的)总结yum

SpringBoot实现Kafka动态反序列化的完整代码

《SpringBoot实现Kafka动态反序列化的完整代码》在分布式系统中,Kafka作为高吞吐量的消息队列,常常需要处理来自不同主题(Topic)的异构数据,不同的业务场景可能要求对同一消费者组内的... 目录引言一、问题背景1.1 动态反序列化的需求1.2 常见问题二、动态反序列化的核心方案2.1 ht

golang实现动态路由的项目实践

《golang实现动态路由的项目实践》本文主要介绍了golang实现动态路由项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习... 目录一、动态路由1.结构体(数据库的定义)2.预加载preload3.添加关联的方法一、动态路由1

IDEA下"File is read-only"可能原因分析及"找不到或无法加载主类"的问题

《IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题》:本文主要介绍IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题,具有很好的参... 目录1.File is read-only”可能原因2.“找不到或无法加载主类”问题的解决总结1.File

idea中project的显示问题及解决

《idea中project的显示问题及解决》:本文主要介绍idea中project的显示问题及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录idea中project的显示问题清除配置重China编程新生成配置总结idea中project的显示问题新建空的pr

redis在spring boot中异常退出的问题解决方案

《redis在springboot中异常退出的问题解决方案》:本文主要介绍redis在springboot中异常退出的问题解决方案,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴... 目录问题:解决 问题根源️ 解决方案1. 异步处理 + 提前ACK(关键步骤)2. 调整Redis消费者组

Ubuntu上手动安装Go环境并解决“可执行文件格式错误”问题

《Ubuntu上手动安装Go环境并解决“可执行文件格式错误”问题》:本文主要介绍Ubuntu上手动安装Go环境并解决“可执行文件格式错误”问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录一、前言二、系统架构检测三、卸载旧版 Go四、下载并安装正确版本五、配置环境变量六、验证安装七、常见