强化学习深入学习(一):价值函数和贝尔曼方程

2024-09-05 17:36

本文主要是介绍强化学习深入学习(一):价值函数和贝尔曼方程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 0. 引言
  • 1. 回报(Return)
  • 2. 价值函数(Value Function)
  • 3. 贝尔曼期望方程(Bellman Expectation Equation)
  • 4. 贝尔曼最优方程(Bellman Optimality Equation)
  • 总结


0. 引言

强化学习(Reinforcement Learning, RL)是一种机器学习方法,通过与环境的交互来学习如何采取行动,以最大化累积的回报。智能体的目标是找到最优策略 π ∗ \pi^* π,使得从任意状态 s s s 开始行动时,累积的期望回报最大。这个问题通常通过优化策略的方式来解决。

强化学习的基本概念

  • 智能体(Agent): 强化学习的核心参与者,它通过与环境交互,选择行动并从中学习。智能体的目标是找到一个策略,使得在长期内获得的累积回报最大化。

  • 环境(Environment): 智能体所处的外部世界。智能体与环境交互,通过执行动作改变环境状态,并接收来自环境的反馈(奖励和新状态)。

  • 状态(State, s s s: 环境在某一时刻的具体情况或描述。状态可以是环境的完整描述,也可以是部分信息的表示。

  • 动作(Action, a a a: 智能体在每个状态下可以采取的操作。动作会影响环境的状态,并引发反馈。

  • 奖励(Reward, r r r: 环境对智能体采取某一动作的反馈。奖励是一个标量值,用于指示该动作的好坏。智能体的目标是最大化累积奖励。

  • 策略(Policy, π \pi π: 智能体在每个状态下选择动作的规则或分布。策略可以是确定性的(在某状态下总是选择同一动作)或随机的(在某状态下根据概率选择动作)。

  • 回报(Return, G G G: 从某一时刻开始,智能体获得的累积奖励。通常使用折扣因子 γ \gamma γ 来对未来的奖励进行折扣计算。

强化学习的工作流程

  1. 初始状态: 智能体从环境中感知当前的状态 s t s_t st

  2. 动作选择: 基于当前策略 π \pi π,智能体选择一个动作 a t a_t at

  3. 执行动作: 智能体执行动作 a t a_t at,该动作影响环境并导致状态转移。

  4. 反馈接收: 环境反馈给智能体一个奖励 r t + 1 r_{t+1} rt+1 以及新的状态 s t + 1 s_{t+1} st+1

  5. 更新策略: 智能体利用获得的反馈更新策略,使得将来在类似情形下能做出更好的选择。

  6. 重复: 过程重复,直到智能体达到目标或学习结束。

1. 回报(Return)

回报是指在某个状态下开始,经过一系列行动后获得的累积奖励(Reward)。在时间步 t t t 时的回报通常表示为 G t G_t Gt

对于无折扣的情况,总回报为:
G t = R t + 1 + R t + 2 + R t + 3 + ⋯ = ∑ k = 0 ∞ R t + k + 1 G_t = R_{t+1} + R_{t+2} + R_{t+3} + \cdots = \sum_{k=0}^{\infty} R_{t+k+1} Gt=Rt+1+Rt+2+Rt+3+=k=0Rt+k+1

如果使用折扣因子 γ \gamma γ(其中 0 ≤ γ ≤ 1 0 \leq \gamma \leq 1 0γ1)来表示未来奖励的重要性,回报可以表示为:
G t = R t + 1 + γ R t + 2 + γ 2 R t + 3 + ⋯ = ∑ k = 0 ∞ γ k R t + k + 1 G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} Gt=Rt+1+γRt+2+γ2Rt+3+=k=0γkRt+k+1

这里, γ \gamma γ 控制了未来奖励对当前回报的影响程度。当 γ \gamma γ 越接近 1,越更加重视长期奖励;当 γ \gamma γ 越接近 0,则更加关注短期奖励。

2. 价值函数(Value Function)

价值函数用来评估一个状态或状态-动作对的好坏。价值函数有两种主要形式:

(1)状态价值函数(State Value Function, V ( s ) V(s) V(s):表示在状态 s s s 下,按照某一策略 π \pi π 行动时,未来回报的期望值。
V π ( s ) = E π [ G t ∣ S t = s ] = E π [ ∑ k = 0 ∞ γ k R t + k + 1 ∣ S t = s ] V_{\pi}(s) = \mathbb{E}_{\pi} \left[ G_t \mid S_t = s \right] = \mathbb{E}_{\pi} \left[ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right] Vπ(s)=Eπ[GtSt=s]=Eπ[k=0γkRt+k+1St=s]

(2)动作价值函数(Action Value Function, Q ( s , a ) Q(s, a) Q(s,a):表示在状态 s s s 下采取动作 a a a 并且随后按照某一策略 π \pi π 行动时,未来回报的期望值。
Q π ( s , a ) = E π [ G t ∣ S t = s , A t = a ] Q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[ G_t \mid S_t = s, A_t = a \right] Qπ(s,a)=Eπ[GtSt=s,At=a]

下面说明状态价值函数 V π ( s ) V_{\pi}(s) Vπ(s) 和动作价值函数 Q π ( s , a ) Q_{\pi}(s, a) Qπ(s,a) 之间通过策略 π \pi π 联系在一起。 V π ( s ) V_{\pi}(s) Vπ(s) 可以被视为在当前状态下所有可能动作的 Q π ( s , a ) Q_{\pi}(s, a) Qπ(s,a) 的加权平均。

3. 贝尔曼期望方程(Bellman Expectation Equation)

贝尔曼期望方程将价值函数表示为当前奖励与未来状态的价值之间的关系。

(1)状态价值函数的贝尔曼期望方程
V π ( s ) = E π [ R t + 1 + γ V π ( S t + 1 ) ∣ S t = s ] V_{\pi}(s) = \mathbb{E}_{\pi} \left[ R_{t+1} + \gamma V_{\pi}(S_{t+1}) \mid S_t = s \right] Vπ(s)=Eπ[Rt+1+γVπ(St+1)St=s]
这表示在状态 s s s 下的价值等于当前行动得到的即时奖励与未来状态的折扣价值的期望值。

(2)动作价值函数的贝尔曼期望方程
Q π ( s , a ) = E [ R t + 1 + γ E π [ Q π ( S t + 1 , A t + 1 ) ∣ S t + 1 ] ∣ S t = s , A t = a ] Q_{\pi}(s, a) = \mathbb{E} \left[ R_{t+1} + \gamma \mathbb{E}_{\pi} \left[ Q_{\pi}(S_{t+1}, A_{t+1}) \mid S_{t+1} \right] \mid S_t = s, A_t = a \right] Qπ(s,a)=E[Rt+1+γEπ[Qπ(St+1,At+1)St+1]St=s,At=a]
这里, Q π ( s , a ) Q_{\pi}(s, a) Qπ(s,a) 表示在状态 s s s 下采取动作 a a a 后,立即获得的奖励加上下一状态的期望价值。

4. 贝尔曼最优方程(Bellman Optimality Equation)

贝尔曼最优方程用于描述最优策略下的状态或动作的价值。

(1)最优状态价值函数的贝尔曼方程
V ∗ ( s ) = max ⁡ a E [ R t + 1 + γ V ∗ ( S t + 1 ) ∣ S t = s , A t = a ] V_*(s) = \max_a \mathbb{E} \left[ R_{t+1} + \gamma V^*(S_{t+1}) \mid S_t = s, A_t = a \right] V(s)=amaxE[Rt+1+γV(St+1)St=s,At=a]
这意味着在最优策略下,状态 s s s 的价值是通过选择在该状态下的最佳行动所获得的即时奖励和后续状态的最优价值来决定的。

(2)最优动作价值函数的贝尔曼方程
Q ∗ ( s , a ) = E [ R t + 1 + γ max ⁡ a ′ Q ∗ ( S t + 1 , a ′ ) ∣ S t = s , A t = a ] Q_*(s, a) = \mathbb{E} \left[ R_{t+1} + \gamma \max_{a'} Q^*(S_{t+1}, a') \mid S_t = s, A_t = a \right] Q(s,a)=E[Rt+1+γamaxQ(St+1,a)St=s,At=a]
这里, Q ∗ ( s , a ) Q_*(s, a) Q(s,a) 表示在状态 s s s 下采取动作 a a a 后,立即获得的奖励加上后续状态的最优行动价值。

总结

(1)回报 G t G_t Gt 是从某个时间步开始所能获得的累积奖励。

(2)价值函数 V ( s ) V(s) V(s) Q ( s , a ) Q(s, a) Q(s,a) 用于评估状态或动作的长期好坏。

(3)贝尔曼期望方程 将价值函数与未来的期望回报联系起来,表达策略下的期望价值。

(4)贝尔曼最优方程 则用于找到最优策略下的最大期望回报。


欢迎关注本人,我是喜欢搞事的程序猿; 一起进步,一起学习;

欢迎关注知乎/CSDN:SmallerFL

也欢迎关注我的wx公众号(精选高质量文章):一个比特定乾坤

在这里插入图片描述

这篇关于强化学习深入学习(一):价值函数和贝尔曼方程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139613

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MySQL中REPLACE函数与语句举例详解

《MySQL中REPLACE函数与语句举例详解》在MySQL中REPLACE函数是一个用于处理字符串的强大工具,它的主要功能是替换字符串中的某些子字符串,:本文主要介绍MySQL中REPLACE函... 目录一、REPLACE()函数语法:参数说明:功能说明:示例:二、REPLACE INTO语句语法:参数

python中update()函数的用法和一些例子

《python中update()函数的用法和一些例子》update()方法是字典对象的方法,用于将一个字典中的键值对更新到另一个字典中,:本文主要介绍python中update()函数的用法和一些... 目录前言用法注意事项示例示例 1: 使用另一个字典来更新示例 2: 使用可迭代对象来更新示例 3: 使用

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

深入理解go中interface机制

《深入理解go中interface机制》本文主要介绍了深入理解go中interface机制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前言interface使用类型判断总结前言go的interface是一组method的集合,不