[置顶]后缀数组(suffix array)详解

2024-09-05 16:32

本文主要是介绍[置顶]后缀数组(suffix array)详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面

在字符串处理当中,后缀树和后缀数组都是非常有力的工具。

其中后缀树大家了解得比较多,关于后缀数组则很少见于国内的资料。

其实后缀数组是后缀树的一个非常精巧的替代品,它比后缀树容易编程实现,

能够实现后缀树的很多功能而时间复杂度也不太逊色,并且,它比后缀树所占用的空间小很多。

可以说,在信息学竞赛中后缀数组比后缀树要更为实用!

因此在本文中笔者想介绍一下后缀数组的基本概念、构造方法,

以及配合后缀数组的最长公共前缀数组的构造方法,最后结合一些例子谈谈后缀数组的应用。

What Is Suffix Array?

学习后缀数组需要认识几个概念:

子串

  字符串S的子串r[i..j],i<=j,表示S串中从i到j这一段,就是顺次排列r[i],r[i+1],...,r[j]形成的子串。

后缀

  后缀是指从某个位置 i 开始到整个串末尾结束的一个特殊子串。字符串r的从第i个字符开始的后缀表示为Suffix(i),

    也就是Suffix(i)=S[i...len(S)-1] 。

后缀数组(SA[i]存放排名第i大的后缀首字符下标)

  后缀数组 SA 是一个一维数组,它保存1..n 的某个排列SA[1] ,SA[2] ,...,SA[n] ,

  并且保证Suffix(SA[i])<Suffix(SA[i+1]), 1<=i<n 。

    也就是将S的n个后缀从小到大进行排序之后把排好序的后缀的开头位置顺次放入SA 中。

名次数组(rank[i]存放suffix(i)的优先级)

  名次数组 Rank[i] 保存的是 Suffix(i) 在所有后缀中从小到大排列的“名次”

   注:这个是排序的关键字~(这句话是我们排序的重点)

 

(我的理解):

sa[i]:保存的是S字符串的所有后缀在以字典序排序后,排在第i名的字符串在原来子串中的位置。

rank[i]:保存的是S字符串的所有后缀在以字典序排序后,原来的第i名现在排第几。

简单的说,后缀数组(SA)是“排第几的是谁?”,名次数组(RANK)是“你排第几?”

容易看出,后缀数组和名次数组为互逆运算。我们只要算出了sa数组,就可以在O(n)的时间复杂度内算出rank数组。

height数组:height[i]保存的是suffix(i)和suffix(i-1)的最长公共前缀的长度。也就是排名相邻的两个后缀的最长公共前缀。

 

How To Build Suffix Array?

要构造Suffix Array,主要就是构造sa数组,rank数组和height数组。

首先来看一下如何构造sa数组:

构造sa数组的方法有三种:

1)倍增算法:O(nlongn)

2)DC3算法:O(n)

3)skew算法(不常用)

 

这里主要讲一下DC3算法

DC3算法是一个优秀的线性算法!

很多人都认为DC3算法很复杂,其实也没多复杂,代码也就40多行,只是for循环多了点。

DC3算法:

1) 先将后缀分成两部分,然后对第一部分的后缀排序。 

  字符的编号从0开始。

  将后缀分成两部分:

    第一部分是后缀k(k模3不等于0)

    第二部分是后缀k(k模3等于0)

2) 利用(1)的结果,对第二部分的后缀排序。
3) 将(1)和(2)的结果合并,即完成对所有后缀排序。

于是求出了所有后缀的排序,有什么用呢?主要是用于求它们之间的最长公共前缀(Longest Common Prefix,LCP)。

求出sa数组之后,根据rank[sa[i]]=i,rank数组自然也就能够在O(n)的时间内求出。

那我们如何快速的求出height数组呢?

令LCP(i,j)为第i小的后缀和第j小的后缀(也就是Suffix(SA[i])和Suffix(SA[j]))的最长公共前缀的长度,则有如下两个性质: 

    1. 对任意i<=k<=j,有LCP(i,j) = min(LCP(i,k),LCP(k,j))

    2. LCP(i,j)=min(i<k<=j)(LCP(k-1,k))

令height[i]=LCP(i-1,i),即height[i]代表第i小的后缀与第i-1小的后缀的LCP,则求LCP(i,j)就等于求height[i+1]~height[j]之间的RMQ,套用RMQ算法就可以了,复杂度是预处理O(nlogn),查询O(1).

这样一来我们就将height数组也求出来了。

 

下面用草稿纸来模拟一遍:

例如:
aabaaaab


总共有n=8个后缀:

1: aabaaaab

这篇关于[置顶]后缀数组(suffix array)详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139476

相关文章

MySQL中的分组和多表连接详解

《MySQL中的分组和多表连接详解》:本文主要介绍MySQL中的分组和多表连接的相关操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录mysql中的分组和多表连接一、MySQL的分组(group javascriptby )二、多表连接(表连接会产生大量的数据垃圾)MySQL中的

Java 实用工具类Spring 的 AnnotationUtils详解

《Java实用工具类Spring的AnnotationUtils详解》Spring框架提供了一个强大的注解工具类org.springframework.core.annotation.Annot... 目录前言一、AnnotationUtils 的常用方法二、常见应用场景三、与 JDK 原生注解 API 的

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技