【UVALive】3887 Slim Span 枚举+最小生成树

2024-09-05 15:48

本文主要是介绍【UVALive】3887 Slim Span 枚举+最小生成树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

传送门:【UVALive】3887 Slim Span


题目大意:给出一个n(2 <= n <= 100)个结点的无向图,找一棵苗条度(最大边减最小边的值)最小的生成树。图中不含自环或重边。


题目分析:枚举最小边求生成树即可。模板用用萌萌哒~


代码如下:


#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;#define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REPV( i , a , b ) for ( int i = a ; i >= b ; -- i )
#define LOGF( j , a , b ) for ( int j = 1 ; ( 1 << j ) < n ; ++ j )
#define EDGE( i , x ) for ( int i = adj[x] ; ~i ; i = edge[i].n )
#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define clear( a , x ) memset ( a , x , sizeof a )const int LOGN = 20 ;
const int MAXN = 105 ;
const int MAXE = 100005 ;
const int OO = 0x3f3f3f3f ;
struct Line {int x , y , val ;void input () {scanf ( "%d%d%d" , &x , &y , &val ) ;}bool operator < ( const Line &a ) const {return val < a.val ;}
} ;struct Edge {int v , w , n ;Edge ( int V = 0 , int W = 0 , int N  = 0 ) :v(V) , w(W) , n(N) {}
} ;struct findAndUnion {int p[MAXN] ;int rank[MAXN] ;void init () {REP ( i , MAXN )p[i] = i , rank[i] = 1 ;}int find ( int x ) {//非递归查找+路径压缩int tmp , o = x , ans ;while ( p[o] != o )o = p[o] ;ans = o ;o = x ;while ( p[o] != o ) {tmp = p[o] ;p[o] = ans ;o = tmp ;}return ans ;}//findint Union ( int x , int y ) {//合并(按秩合并)int f1 = find ( x ) ;int f2 = find ( y ) ;if ( f1 != f2 ) {if ( rank[f1] <= rank[f2] ) {//秩小的合并到秩大的点上p[f1] = f2 ;if ( rank[f1] == rank[f2] )++ rank[f2] ;}elsep[f2] = f1 ;return 1 ;}return 0 ;}//union
} ;struct MST {//并查集findAndUnion F ;int p[MAXN] ;//并查集父节点Line line[MAXE] ;//读入边集Edge edge[MAXE] ;//最小生成树边集int adj[MAXN] , cntE ;//表头及指针//倍增处理及查询(可用于LCA)int maxcost[MAXN][LOGN] ;//maxcost[u][v],最小瓶颈路int anc[MAXN][LOGN] ;//anc[i][j]表示结点i的第2^j级祖先,2^0就是父亲int cost[MAXN] ;//cost[i]表示i与父亲fa[i]之间的边权int fa[MAXN] ;//父节点int deep[MAXN] ;//结点深度int n , m ;//结点数,边数void init () {cntE = 0 ;clear ( adj , -1 ) ;clear ( deep , 0 ) ;}//initvoid addedge ( int u , int v , int w ) {edge[cntE] = Edge ( v , w , adj[u] ) ;adj[u] = cntE ++ ;edge[cntE] = Edge ( u , w , adj[v] ) ;adj[v] = cntE ++ ;}//addedgeint kruskal ( int x ) {//求最小生成树F.init () ;sort ( line + x , line + m ) ;int cnt = 0 ;//int ans = 0 ;REPF ( i , x , m - 1 ) {int tmp = F.Union ( line[i].x , line[i].y ) ;if ( tmp ) {++ cnt ;//ans += line[i].val ;//addedge ( line[i].x , line[i].y , line[i].val ) ;//添加树边if ( cnt == n - 1 ) {//已经得到所有树边,退出//return ans ;return line[i].val - line[x].val ;}}}return -1 ;//构不成树}//kruskalvoid dfs ( int u , int p ) {//得到有根树EDGE ( i , u ) {int v = edge[i].v ;if ( v == p ) continue ;fa[v] = u ;//v的父亲是udeep[v] = deep[u] + 1 ;cost[v] = edge[i].w ;dfs ( v , u ) ;}}//dfsvoid preProcess () {//预处理出anc和maxcost数组REPF ( i , 1 , n ) {anc[i][0] = fa[i] ;// i^0 级祖先就是父亲maxcost[i][0] = cost[i] ;//i与fa[i]之间的最大权值就是cost[i]LOGF ( j , 1 , n )anc[i][j] = -1 ;}LOGF ( j , 1 , n )REPF ( i , 1 , n )if ( ~anc[i][j - 1] ) {int a = anc[i][j - 1] ;anc[i][j] = anc[a][j - 1] ;maxcost[i][j] = max ( maxcost[i][j - 1] , maxcost[a][j - 1] ) ;//选择i~anc[i][j - 1]中的最大权值和anc[i][j - 1]~anc[anc[i][j - 1][j - 1]中的最大权值//也就是i ~ (i^(j-1)) 和 (i^(j-1)) ~ i^j 中选取最大权值(子段的最大权值已经求出)}}//preProcessint query ( int p , int q ) {//查询两点间的最小瓶颈路int tmp , log = 0 , ans = -OO ;if ( deep[p] < deep[q] )//令p的深度大于等于q,不满足就交换swap ( p , q ) ;LOGF ( i , 1 , deep[p] + 1 )//得到p的最大log段( 满足 ( 1 << log ) <= deep[p] , 1 << ( log + 1 ) > deep[p] )++ log ;REPV ( i , log , 0 )//将p的深度降低到与q相同,同时求出p到q深度之间的最大权值if ( deep[p] - ( 1 << i ) >= deep[q] ) {//第2^i级祖先的深度大于等于qans = max ( ans , maxcost[p][i] ) ;p = anc[p][i] ;//跳到2^i级祖先的位置}if ( p == q )//q是p的祖先,则之前的处理直接让p下降到q的位置,p、q之间的最大权值已经求出return ans ;//LCA返回p( p 等于 q )REPV ( i , log , 0 )//比较的前提是p、q深度相同if ( ~anc[p][i] && anc[p][i] != anc[q][i] ) {//p和q深度相同,判断一个即可//同时祖先不能是同一个,保证所比较的都是唯一路径上的边,否则会跳出最近公共祖先,得到错误结果ans = max ( ans , maxcost[p][i] ) ;ans = max ( ans , maxcost[q][i] ) ;p = anc[p][i] ;//跳q = anc[q][i] ;//跳}ans = max ( ans , cost[p] ) ;ans = max ( ans , cost[q] ) ;return ans ;//LCA返回fa[p]( 它也等于fa[q] )}//query
} ;MST tree ;void work () {int u , v ;while ( ~scanf ( "%d%d" , &tree.n , &tree.m ) && ( tree.n || tree.m ) ) {REP ( i , tree.m )tree.line[i].input () ;int ans = tree.kruskal ( 0 ) ;//求最小生成树if ( ans == -1 )printf ( "-1\n" ) ;else {REPF ( i , 1 , tree.m ) {int tmp = tree.kruskal ( i ) ;if ( tmp == -1 ) {break ;}ans = min ( ans , tmp ) ;}printf ( "%d\n" , ans ) ;}}
}int main () {work () ;return 0 ;
}



这篇关于【UVALive】3887 Slim Span 枚举+最小生成树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139395

相关文章

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

Java 枚举的基本使用方法及实际使用场景

《Java枚举的基本使用方法及实际使用场景》枚举是Java中一种特殊的类,用于定义一组固定的常量,枚举类型提供了更好的类型安全性和可读性,适用于需要定义一组有限且固定的值的场景,本文给大家介绍Jav... 目录一、什么是枚举?二、枚举的基本使用方法定义枚举三、实际使用场景代替常量状态机四、更多用法1.实现接

python如何生成指定文件大小

《python如何生成指定文件大小》:本文主要介绍python如何生成指定文件大小的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python生成指定文件大小方法一(速度最快)方法二(中等速度)方法三(生成可读文本文件–较慢)方法四(使用内存映射高效生成

Maven项目中集成数据库文档生成工具的操作步骤

《Maven项目中集成数据库文档生成工具的操作步骤》在Maven项目中,可以通过集成数据库文档生成工具来自动生成数据库文档,本文为大家整理了使用screw-maven-plugin(推荐)的完... 目录1. 添加插件配置到 pom.XML2. 配置数据库信息3. 执行生成命令4. 高级配置选项5. 注意事

MybatisX快速生成增删改查的方法示例

《MybatisX快速生成增删改查的方法示例》MybatisX是基于IDEA的MyBatis/MyBatis-Plus开发插件,本文主要介绍了MybatisX快速生成增删改查的方法示例,文中通过示例代... 目录1 安装2 基本功能2.1 XML跳转2.2 代码生成2.2.1 生成.xml中的sql语句头2

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

SpringBoot实现二维码生成的详细步骤与完整代码

《SpringBoot实现二维码生成的详细步骤与完整代码》如今,二维码的应用场景非常广泛,从支付到信息分享,二维码都扮演着重要角色,SpringBoot是一个非常流行的Java基于Spring框架的微... 目录一、环境搭建二、创建 Spring Boot 项目三、引入二维码生成依赖四、编写二维码生成代码五

Android与iOS设备MAC地址生成原理及Java实现详解

《Android与iOS设备MAC地址生成原理及Java实现详解》在无线网络通信中,MAC(MediaAccessControl)地址是设备的唯一网络标识符,本文主要介绍了Android与iOS设备M... 目录引言1. MAC地址基础1.1 MAC地址的组成1.2 MAC地址的分类2. android与I

PyQt5+Python-docx实现一键生成测试报告

《PyQt5+Python-docx实现一键生成测试报告》作为一名测试工程师,你是否经历过手动填写测试报告的痛苦,本文将用Python的PyQt5和python-docx库,打造一款测试报告一键生成工... 目录引言工具功能亮点工具设计思路1. 界面设计:PyQt5实现数据输入2. 文档生成:python-

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚