【UVALive】3887 Slim Span 枚举+最小生成树

2024-09-05 15:48

本文主要是介绍【UVALive】3887 Slim Span 枚举+最小生成树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

传送门:【UVALive】3887 Slim Span


题目大意:给出一个n(2 <= n <= 100)个结点的无向图,找一棵苗条度(最大边减最小边的值)最小的生成树。图中不含自环或重边。


题目分析:枚举最小边求生成树即可。模板用用萌萌哒~


代码如下:


#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;#define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REPV( i , a , b ) for ( int i = a ; i >= b ; -- i )
#define LOGF( j , a , b ) for ( int j = 1 ; ( 1 << j ) < n ; ++ j )
#define EDGE( i , x ) for ( int i = adj[x] ; ~i ; i = edge[i].n )
#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define clear( a , x ) memset ( a , x , sizeof a )const int LOGN = 20 ;
const int MAXN = 105 ;
const int MAXE = 100005 ;
const int OO = 0x3f3f3f3f ;
struct Line {int x , y , val ;void input () {scanf ( "%d%d%d" , &x , &y , &val ) ;}bool operator < ( const Line &a ) const {return val < a.val ;}
} ;struct Edge {int v , w , n ;Edge ( int V = 0 , int W = 0 , int N  = 0 ) :v(V) , w(W) , n(N) {}
} ;struct findAndUnion {int p[MAXN] ;int rank[MAXN] ;void init () {REP ( i , MAXN )p[i] = i , rank[i] = 1 ;}int find ( int x ) {//非递归查找+路径压缩int tmp , o = x , ans ;while ( p[o] != o )o = p[o] ;ans = o ;o = x ;while ( p[o] != o ) {tmp = p[o] ;p[o] = ans ;o = tmp ;}return ans ;}//findint Union ( int x , int y ) {//合并(按秩合并)int f1 = find ( x ) ;int f2 = find ( y ) ;if ( f1 != f2 ) {if ( rank[f1] <= rank[f2] ) {//秩小的合并到秩大的点上p[f1] = f2 ;if ( rank[f1] == rank[f2] )++ rank[f2] ;}elsep[f2] = f1 ;return 1 ;}return 0 ;}//union
} ;struct MST {//并查集findAndUnion F ;int p[MAXN] ;//并查集父节点Line line[MAXE] ;//读入边集Edge edge[MAXE] ;//最小生成树边集int adj[MAXN] , cntE ;//表头及指针//倍增处理及查询(可用于LCA)int maxcost[MAXN][LOGN] ;//maxcost[u][v],最小瓶颈路int anc[MAXN][LOGN] ;//anc[i][j]表示结点i的第2^j级祖先,2^0就是父亲int cost[MAXN] ;//cost[i]表示i与父亲fa[i]之间的边权int fa[MAXN] ;//父节点int deep[MAXN] ;//结点深度int n , m ;//结点数,边数void init () {cntE = 0 ;clear ( adj , -1 ) ;clear ( deep , 0 ) ;}//initvoid addedge ( int u , int v , int w ) {edge[cntE] = Edge ( v , w , adj[u] ) ;adj[u] = cntE ++ ;edge[cntE] = Edge ( u , w , adj[v] ) ;adj[v] = cntE ++ ;}//addedgeint kruskal ( int x ) {//求最小生成树F.init () ;sort ( line + x , line + m ) ;int cnt = 0 ;//int ans = 0 ;REPF ( i , x , m - 1 ) {int tmp = F.Union ( line[i].x , line[i].y ) ;if ( tmp ) {++ cnt ;//ans += line[i].val ;//addedge ( line[i].x , line[i].y , line[i].val ) ;//添加树边if ( cnt == n - 1 ) {//已经得到所有树边,退出//return ans ;return line[i].val - line[x].val ;}}}return -1 ;//构不成树}//kruskalvoid dfs ( int u , int p ) {//得到有根树EDGE ( i , u ) {int v = edge[i].v ;if ( v == p ) continue ;fa[v] = u ;//v的父亲是udeep[v] = deep[u] + 1 ;cost[v] = edge[i].w ;dfs ( v , u ) ;}}//dfsvoid preProcess () {//预处理出anc和maxcost数组REPF ( i , 1 , n ) {anc[i][0] = fa[i] ;// i^0 级祖先就是父亲maxcost[i][0] = cost[i] ;//i与fa[i]之间的最大权值就是cost[i]LOGF ( j , 1 , n )anc[i][j] = -1 ;}LOGF ( j , 1 , n )REPF ( i , 1 , n )if ( ~anc[i][j - 1] ) {int a = anc[i][j - 1] ;anc[i][j] = anc[a][j - 1] ;maxcost[i][j] = max ( maxcost[i][j - 1] , maxcost[a][j - 1] ) ;//选择i~anc[i][j - 1]中的最大权值和anc[i][j - 1]~anc[anc[i][j - 1][j - 1]中的最大权值//也就是i ~ (i^(j-1)) 和 (i^(j-1)) ~ i^j 中选取最大权值(子段的最大权值已经求出)}}//preProcessint query ( int p , int q ) {//查询两点间的最小瓶颈路int tmp , log = 0 , ans = -OO ;if ( deep[p] < deep[q] )//令p的深度大于等于q,不满足就交换swap ( p , q ) ;LOGF ( i , 1 , deep[p] + 1 )//得到p的最大log段( 满足 ( 1 << log ) <= deep[p] , 1 << ( log + 1 ) > deep[p] )++ log ;REPV ( i , log , 0 )//将p的深度降低到与q相同,同时求出p到q深度之间的最大权值if ( deep[p] - ( 1 << i ) >= deep[q] ) {//第2^i级祖先的深度大于等于qans = max ( ans , maxcost[p][i] ) ;p = anc[p][i] ;//跳到2^i级祖先的位置}if ( p == q )//q是p的祖先,则之前的处理直接让p下降到q的位置,p、q之间的最大权值已经求出return ans ;//LCA返回p( p 等于 q )REPV ( i , log , 0 )//比较的前提是p、q深度相同if ( ~anc[p][i] && anc[p][i] != anc[q][i] ) {//p和q深度相同,判断一个即可//同时祖先不能是同一个,保证所比较的都是唯一路径上的边,否则会跳出最近公共祖先,得到错误结果ans = max ( ans , maxcost[p][i] ) ;ans = max ( ans , maxcost[q][i] ) ;p = anc[p][i] ;//跳q = anc[q][i] ;//跳}ans = max ( ans , cost[p] ) ;ans = max ( ans , cost[q] ) ;return ans ;//LCA返回fa[p]( 它也等于fa[q] )}//query
} ;MST tree ;void work () {int u , v ;while ( ~scanf ( "%d%d" , &tree.n , &tree.m ) && ( tree.n || tree.m ) ) {REP ( i , tree.m )tree.line[i].input () ;int ans = tree.kruskal ( 0 ) ;//求最小生成树if ( ans == -1 )printf ( "-1\n" ) ;else {REPF ( i , 1 , tree.m ) {int tmp = tree.kruskal ( i ) ;if ( tmp == -1 ) {break ;}ans = min ( ans , tmp ) ;}printf ( "%d\n" , ans ) ;}}
}int main () {work () ;return 0 ;
}



这篇关于【UVALive】3887 Slim Span 枚举+最小生成树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139395

相关文章

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

Java利用docx4j+Freemarker生成word文档

《Java利用docx4j+Freemarker生成word文档》这篇文章主要为大家详细介绍了Java如何利用docx4j+Freemarker生成word文档,文中的示例代码讲解详细,感兴趣的小伙伴... 目录技术方案maven依赖创建模板文件实现代码技术方案Java 1.8 + docx4j + Fr

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre