齐次变换矩阵的原理与应用

2024-09-05 15:36

本文主要是介绍齐次变换矩阵的原理与应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

齐次变换矩阵的原理与应用

通过齐次变换矩阵,可以描述机械臂末端执行器(法兰)在三维空间中的平移和旋转操作。该矩阵结合了旋转和平移信息,用于坐标变换。

1. 齐次变换矩阵的基本形式

一个齐次变换矩阵 T是一个 4x4 矩阵,表示刚体的旋转和平移:
T = [ R t 0 1 ] = [ r 11 r 12 r 13 x r 21 r 22 r 23 y r 31 r 32 r 33 z 0 0 0 1 ] T = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & x \\ r_{21} & r_{22} & r_{23} & y \\ r_{31} & r_{32} & r_{33} & z \\ 0 & 0 & 0 & 1 \end{bmatrix} T=[R0t1]= r11r21r310r12r22r320r13r23r330xyz1

  • R是 3×3 的旋转矩阵,描述物体的姿态。
  • t = [x, y, z]^T 的平移向量,描述物体的位置。
  • 最后一行 [0,0,0,1] 保持矩阵的数学性质。

2. 平移和旋转的数学表达

平移矩阵

平移矩阵 Tmove 用于描述物体在空间中的移动:
T move = [ 1 0 0 Δ x 0 1 0 Δ y 0 0 1 Δ z 0 0 0 1 ] T_{\text{move}} = \begin{bmatrix} 1 & 0 & 0 & \Delta x \\ 0 & 1 & 0 & \Delta y \\ 0 & 0 & 1 & \Delta z \\ 0 & 0 & 0 & 1 \end{bmatrix} Tmove= 100001000010ΔxΔyΔz1
其中,Δx,Δy,Δz是沿 X、Y、Z 方向的移动距离。

旋转矩阵

旋转矩阵用于描述物体在各轴上的旋转。常见的旋转矩阵包括:

  • 绕 X 轴旋转的旋转矩阵Rx(θ):
    R x ( θ ) = [ 1 0 0 0 cos ⁡ θ − sin ⁡ θ 0 sin ⁡ θ cos ⁡ θ ] R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix} Rx(θ)= 1000cosθsinθ0sinθcosθ

  • 绕 Y 轴旋转的旋转矩阵 Ry(θ):
    R y ( θ ) = [ cos ⁡ θ 0 sin ⁡ θ 0 1 0 − sin ⁡ θ 0 cos ⁡ θ ] R_y(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix} Ry(θ)= cosθ0sinθ010sinθ0cosθ

  • 绕 Z 轴旋转的旋转矩阵 Rz(θ):
    R z ( θ ) = [ cos ⁡ θ − sin ⁡ θ 0 sin ⁡ θ cos ⁡ θ 0 0 0 1 ] R_z(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} Rz(θ)= cosθsinθ0sinθcosθ0001

综合旋转矩阵 R

综合旋转矩阵 RRR 是三个单轴旋转矩阵的乘积:
R = R z ( θ z ) ⋅ R y ( θ y ) ⋅ R x ( θ x ) R = R_z(\theta_z) \cdot R_y(\theta_y) \cdot R_x(\theta_x) R=Rz(θz)Ry(θy)Rx(θx)

3. 位姿变换的数学运算

假设当前位姿由齐次变换矩阵 Tnow 表示,可以通过乘以平移或旋转矩阵,得到新的目标位姿 Ttarget:
T target = T now ⋅ T move T_{\text{target}} = T_{\text{now}} \cdot T_{\text{move}} Ttarget=TnowTmove
矩阵的乘法顺序表示变换的执行顺序,顺序不同,结果会有所不同。

4. 从变换矩阵中提取位姿

计算目标变换矩阵后,可以从矩阵中提取出新的位置和姿态:

  • 平移位置:从 Ttarget 的右上角元素 [x, y, z]^T 提取平移分量。
  • 姿态(欧拉角):从旋转矩阵部分提取 RX、RY、RZ 角度。

提取 RX、RY、RZ 的公式如下:
rx = arctan ⁡ 2 ( T 32 , T 33 ) \text{rx} = \arctan2(T_{32}, T_{33}) rx=arctan2(T32,T33)

ry = arcsin ⁡ ( − T 31 ) \text{ry} = \arcsin(-T_{31}) ry=arcsin(T31)

rz = arctan ⁡ 2 ( T 21 , T 11 ) \text{rz} = \arctan2(T_{21}, T_{11}) rz=arctan2(T21,T11)

这篇关于齐次变换矩阵的原理与应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139364

相关文章

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定