齐次变换矩阵的原理与应用

2024-09-05 15:36

本文主要是介绍齐次变换矩阵的原理与应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

齐次变换矩阵的原理与应用

通过齐次变换矩阵,可以描述机械臂末端执行器(法兰)在三维空间中的平移和旋转操作。该矩阵结合了旋转和平移信息,用于坐标变换。

1. 齐次变换矩阵的基本形式

一个齐次变换矩阵 T是一个 4x4 矩阵,表示刚体的旋转和平移:
T = [ R t 0 1 ] = [ r 11 r 12 r 13 x r 21 r 22 r 23 y r 31 r 32 r 33 z 0 0 0 1 ] T = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & x \\ r_{21} & r_{22} & r_{23} & y \\ r_{31} & r_{32} & r_{33} & z \\ 0 & 0 & 0 & 1 \end{bmatrix} T=[R0t1]= r11r21r310r12r22r320r13r23r330xyz1

  • R是 3×3 的旋转矩阵,描述物体的姿态。
  • t = [x, y, z]^T 的平移向量,描述物体的位置。
  • 最后一行 [0,0,0,1] 保持矩阵的数学性质。

2. 平移和旋转的数学表达

平移矩阵

平移矩阵 Tmove 用于描述物体在空间中的移动:
T move = [ 1 0 0 Δ x 0 1 0 Δ y 0 0 1 Δ z 0 0 0 1 ] T_{\text{move}} = \begin{bmatrix} 1 & 0 & 0 & \Delta x \\ 0 & 1 & 0 & \Delta y \\ 0 & 0 & 1 & \Delta z \\ 0 & 0 & 0 & 1 \end{bmatrix} Tmove= 100001000010ΔxΔyΔz1
其中,Δx,Δy,Δz是沿 X、Y、Z 方向的移动距离。

旋转矩阵

旋转矩阵用于描述物体在各轴上的旋转。常见的旋转矩阵包括:

  • 绕 X 轴旋转的旋转矩阵Rx(θ):
    R x ( θ ) = [ 1 0 0 0 cos ⁡ θ − sin ⁡ θ 0 sin ⁡ θ cos ⁡ θ ] R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix} Rx(θ)= 1000cosθsinθ0sinθcosθ

  • 绕 Y 轴旋转的旋转矩阵 Ry(θ):
    R y ( θ ) = [ cos ⁡ θ 0 sin ⁡ θ 0 1 0 − sin ⁡ θ 0 cos ⁡ θ ] R_y(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix} Ry(θ)= cosθ0sinθ010sinθ0cosθ

  • 绕 Z 轴旋转的旋转矩阵 Rz(θ):
    R z ( θ ) = [ cos ⁡ θ − sin ⁡ θ 0 sin ⁡ θ cos ⁡ θ 0 0 0 1 ] R_z(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} Rz(θ)= cosθsinθ0sinθcosθ0001

综合旋转矩阵 R

综合旋转矩阵 RRR 是三个单轴旋转矩阵的乘积:
R = R z ( θ z ) ⋅ R y ( θ y ) ⋅ R x ( θ x ) R = R_z(\theta_z) \cdot R_y(\theta_y) \cdot R_x(\theta_x) R=Rz(θz)Ry(θy)Rx(θx)

3. 位姿变换的数学运算

假设当前位姿由齐次变换矩阵 Tnow 表示,可以通过乘以平移或旋转矩阵,得到新的目标位姿 Ttarget:
T target = T now ⋅ T move T_{\text{target}} = T_{\text{now}} \cdot T_{\text{move}} Ttarget=TnowTmove
矩阵的乘法顺序表示变换的执行顺序,顺序不同,结果会有所不同。

4. 从变换矩阵中提取位姿

计算目标变换矩阵后,可以从矩阵中提取出新的位置和姿态:

  • 平移位置:从 Ttarget 的右上角元素 [x, y, z]^T 提取平移分量。
  • 姿态(欧拉角):从旋转矩阵部分提取 RX、RY、RZ 角度。

提取 RX、RY、RZ 的公式如下:
rx = arctan ⁡ 2 ( T 32 , T 33 ) \text{rx} = \arctan2(T_{32}, T_{33}) rx=arctan2(T32,T33)

ry = arcsin ⁡ ( − T 31 ) \text{ry} = \arcsin(-T_{31}) ry=arcsin(T31)

rz = arctan ⁡ 2 ( T 21 , T 11 ) \text{rz} = \arctan2(T_{21}, T_{11}) rz=arctan2(T21,T11)

这篇关于齐次变换矩阵的原理与应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139364

相关文章

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制