STM32—I2C的基本时序,MU6050的ID读取

2024-09-05 11:44

本文主要是介绍STM32—I2C的基本时序,MU6050的ID读取,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

一、I2C基本时序的书写

二、I2C基本时序的代码

1.引脚的初始化

2.起始时序

3.停止时序

4.发送一个字节

5.接收一个字节

6.发送一个应答

7.接收一个应答

三.MU6050的应答

1.先验证下应答功能:

2.读取ID

总结



前言

环境:

芯片:STM32F103C8T6

Keil:V5.24.2.0

模块:MU6050模块


一、I2C基本时序的书写

上章对I2C时序进行了简单的讲解.

这章对代码进行书写.

二、I2C基本时序的代码

1.引脚的初始化

引脚的宏定义

#define GPIO_PORT    GPIOA
#define SCK_GPIO_PIN        GPIO_Pin_10
#define SDA_GPIO_PIN        GPIO_Pin_9

大家根据自己的连接需要,更改上面的宏就行.

void MyI2C_Init(void)//初始化函数
{/*将SCL和SDA引脚初始化为开漏模式*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Pin = SCK_GPIO_PIN | SDA_GPIO_PIN;GPIO_Init(GPIO_PORT, &GPIO_InitStructure);//需要拉高电平GPIO_SetBits(GPIO_PORT,SCK_GPIO_PIN | SDA_GPIO_PIN);
}

2.起始时序

参考上章的内容,起始时序代码如下:

void MyI2C_Start(void)
{MyI2C_W_SDA(1);MyI2C_W_SCL(1);MyI2C_W_SDA(0);MyI2C_W_SCL(0);
}

1,保证SDA和SCL均在高电平

2.先拉低SDA线

3再拉低SCL线

具体书写的代码:补齐了上面的书写代码,参数0就是输出0.

延时10us是怕更高速度的MCU超过了I2C的频率而设置的.

void MyI2C_W_SCL(uint8_t BitValue)//SCL书写
{GPIO_WriteBit(GPIO_PORT,SCK_GPIO_PIN,(BitAction)BitValue);Delay_us(10);
}
void MyI2C_W_SDA(uint8_t BitValue)//SDA书写
{GPIO_WriteBit(GPIO_PORT,SDA_GPIO_PIN,(BitAction)BitValue);Delay_us(10);
}

3.停止时序

void MyI2C_Stop(void)
{MyI2C_W_SDA(0);MyI2C_W_SCL(1);MyI2C_W_SDA(1);
}

参考上章内容,时序是:在SCL高电平时拉高SDA

为什么第一句是将SDA拉低呢?因为在读取时可能会因为从机的拉高而不是低电平.所以这里进行一个防呆处理.

4.发送一个字节

void MyI2C_SendByte(uint8_t Byte)
{uint8_t i;for(i = 0;i<8;i++){MyI2C_W_SDA(Byte & (0x80 >> i));MyI2C_W_SCL(1);MyI2C_W_SCL(0);}
}

 时序说明:

发送一个字节,就是发送一个bit

重复8次

5.接收一个字节

uint8_t MyI2C_ReceiveByte(void)
{uint8_t i,Byte=0x00;//定义变量MyI2C_W_SDA(1);//交出SDA控制权for(i = 0;i<8;i++){	MyI2C_W_SCL(1);//拉高开始读取数据if(MyI2C_R_SDA() == 1){Byte |= (0x80 >> i);}//是1则或上。是0则跳过。MyI2C_W_SCL(0);//拉低允许从机放入数据}return Byte;
}

详情如注释

6.发送一个应答

void MyI2C_SendAck(uint8_t AckBit)
{MyI2C_W_SDA(AckBit);//写入0或1MyI2C_W_SCL(1);MyI2C_W_SCL(0);//拉高拉低结束一个字节的发送
}

7.接收一个应答

uint8_t MyI2C_ReceiveAck(void)
{uint8_t AckBit;MyI2C_W_SDA(1);	//交出SDA控制权MyI2C_W_SCL(1);//拉高SCL开始读取数据AckBit = MyI2C_R_SDA();//读取数据MyI2C_W_SCL(0);//接收结束return AckBit;
}

以上就是I2C的基本时序.

最后看下.h文件

#ifndef  __MYI2C_H__
#define  __MYI2C_H__void MyI2C_W_SCL(uint8_t BitValue);
void MyI2C_W_SDA(uint8_t BitValue);
uint8_t MyI2C_R_SDA(void);
void MyI2C_Init(void);
void MyI2C_Start(void);
void MyI2C_Stop(void);
void MyI2C_SendByte(uint8_t Byte);
uint8_t MyI2C_ReceiveByte(void);
void MyI2C_SendAck(uint8_t AckBit);
uint8_t MyI2C_ReceiveAck(void);#endif

后面我们就可以调用基本时序,来进行通讯了.

三.MU6050的应答

现在我们来验证下基本时序的功能正常与否

1.先验证下应答功能:

int main(void)
{HardWare_Init();//初始化Delay_ms(10);MyI2C_Start();MyI2C_SendByte(0xD0);//110 1000,需要左移一位uint8_t Ack = MyI2C_ReceiveAck();MyI2C_Stop();OLED_ShowHexNum(70, 28, Ack, 4, OLED_6X8);//显示应答OLED_Update();//显示函数while (1){}
}

此时如果地址正确,则显示0000,如何验证呢?只需要更改下地址,将0xD0更换下再次烧录,则显示0001.说明设备没有应答.

2.读取ID

要写一个读取函数

uint8_t MU6050_RegRead(uint8_t RegAddress)
{uint8_t Data;MyI2C_Start();MyI2C_SendByte(MU6050_ADDRESS);//选择设备地址MyI2C_ReceiveAck();MyI2C_SendByte(RegAddress);//选择寄存器地址MyI2C_ReceiveAck();/*------下面转入正式读程序-------------*/MyI2C_Start();MyI2C_SendByte(MU6050_ADDRESS | 0x01);//选择设备地址,或上1,表示接下来是从机控制信号MyI2C_ReceiveAck();Data = MyI2C_ReceiveByte();MyI2C_SendAck(1);//不继续读则给1,如果还想继续则给0;MyI2C_Stop();return Data;
}

注意:为什么代码有部分重复了

因为我们需要先选择好设备寄存器的地址后才能进行数据的读取操作

而设备寄存器又是在我们操作完后自动+ 1操作的.所以我们先指定到地址,后面再进行读写,数据不会出错.

验证:

int main(void)
{HardWare_Init();Delay_ms(10);MyI2C_Start();MyI2C_SendByte(0x3D);uint8_t Ack = MyI2C_ReceiveAck();MyI2C_Stop();OLED_ShowHexNum(70, 28, Ack, 4, OLED_6X8);//显示应答OLED_Update();//显示函数uint8_t ID = MU6050_RegRead(0x0f);//0x0F地址参数不正确,需要去查阅下正确的地址OLED_ShowHexNum(70, 28, ID, 4, OLED_6X8);OLED_Update();while (1){}
}

然后会显示正确的ID号,大家根据手册去验证下读取的是否正确.


总结

通过读取ID号验证了I2C的时序,功能.是否发现I2C也没有想想的那么难了呢?

这篇关于STM32—I2C的基本时序,MU6050的ID读取的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138872

相关文章

Python ORM神器之SQLAlchemy基本使用完全指南

《PythonORM神器之SQLAlchemy基本使用完全指南》SQLAlchemy是Python主流ORM框架,通过对象化方式简化数据库操作,支持多数据库,提供引擎、会话、模型等核心组件,实现事务... 目录一、什么是SQLAlchemy?二、安装SQLAlchemy三、核心概念1. Engine(引擎)

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键

使用Java读取本地文件并转换为MultipartFile对象的方法

《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定

Go语言连接MySQL数据库执行基本的增删改查

《Go语言连接MySQL数据库执行基本的增删改查》在后端开发中,MySQL是最常用的关系型数据库之一,本文主要为大家详细介绍了如何使用Go连接MySQL数据库并执行基本的增删改查吧... 目录Go语言连接mysql数据库准备工作安装 MySQL 驱动代码实现运行结果注意事项Go语言执行基本的增删改查准备工作

MySQL 数据库表操作完全指南:创建、读取、更新与删除实战

《MySQL数据库表操作完全指南:创建、读取、更新与删除实战》本文系统讲解MySQL表的增删查改(CURD)操作,涵盖创建、更新、查询、删除及插入查询结果,也是贯穿各类项目开发全流程的基础数据交互原... 目录mysql系列前言一、Create(创建)并插入数据1.1 单行数据 + 全列插入1.2 多行数据

SQLServer中生成雪花ID(Snowflake ID)的实现方法

《SQLServer中生成雪花ID(SnowflakeID)的实现方法》:本文主要介绍在SQLServer中生成雪花ID(SnowflakeID)的实现方法,文中通过示例代码介绍的非常详细,... 目录前言认识雪花ID雪花ID的核心特点雪花ID的结构(64位)雪花ID的优势雪花ID的局限性雪花ID的应用场景

DNS查询的利器! linux的dig命令基本用法详解

《DNS查询的利器!linux的dig命令基本用法详解》dig命令可以查询各种类型DNS记录信息,下面我们将通过实际示例和dig命令常用参数来详细说明如何使用dig实用程序... dig(Domain Information Groper)是一款功能强大的 linux 命令行实用程序,通过查询名称服务器并输

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Python使用openpyxl读取Excel的操作详解

《Python使用openpyxl读取Excel的操作详解》本文介绍了使用Python的openpyxl库进行Excel文件的创建、读写、数据操作、工作簿与工作表管理,包括创建工作簿、加载工作簿、操作... 目录1 概述1.1 图示1.2 安装第三方库2 工作簿 workbook2.1 创建:Workboo