地平线Sparse4D论文解析(含论文原文)

2024-09-05 09:20

本文主要是介绍地平线Sparse4D论文解析(含论文原文),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0. 摘要

在自动驾驶感知系统中,3D 检测和跟踪是两个基本任务。本文深入研究了这一领域,并在 Sparse4D 框架的基础上进行了扩展。我们引入了两个辅助训练任务(时间实例去噪和质量估计),并提出了解耦注意力机制,以进行结构性改进,从而显著提升了检测性能。此外,我们通过在推理过程中分配实例 ID 的简单方法,将检测器扩展为跟踪器,进一步突出基于查询的算法的优势。在 nuScenes 基准测试上的广泛实验验证了所提出改进的有效性。以 ResNet50 作为骨干网络,我们在 mAP、NDS 和 AMOTA 上分别提升了 3.0%、2.2% 和 7.6%,达到了 46.9%、56.1% 和 49.0%。我们的最佳模型在 nuScenes 测试集上取得了 71.9% 的 NDS 和 67.7% 的 AMOTA。
代码将发布在 github工程链接。
论文免费下载链接

1. 前言

在时序多视角感知研究领域,基于稀疏的算法取得了显著进展 ,其感知性能已达到与基于密集 BEV 的算法相当的水平,同时提供了几个优势:
1) 自由视角转换。这些稀疏方法无需将图像空间转换为 3D 向量空间。
2) 检测头的计算负载恒定,与感知距离和图像分辨率无关。
3) 更容易通过端到端的方式实现下游任务的集成。

在本文研究中,我们选择了基于稀疏的算法 Sparse4Dv2 作为我们改进的基准。该算法的整体结构如图 1 所示。图像编码器将多视角图像转换为多尺度特征图,而解码器模块则利用这些图像特征来优化实例并生成感知结果。
图1Sparse4D 框架-多视角视频作为输入并输出所有帧的感知结果
首先,我们观察到与基于密集的方法相比,基于稀疏的方法在收敛上面临更大的挑战,最终影响了它们的最终性能。这一问题在二维检测领域已得到充分研究,主要归因于一对一的正样本匹配。这种匹配方式在训练的初期阶段不稳定,并且与一对多匹配相比,正样本的数量也较少,从而降低了解码器训练的效率。此外,Sparse4D 采用了稀疏特征采样,而不是全局交叉注意力,这进一步阻碍了编码器的收敛,因为正样本稀少。在 Sparse4Dv2 中,引入了密集的深度监督,以部分缓解图像编码器面临的这些收敛问题。本文主要旨在通过关注解码器训练的稳定性来提高模型性能。我们将去噪任务作为辅助监督,并将去噪技术从二维单帧检测扩展到三维时间序列检测。这不仅确保了稳定的正样本匹配,还显著增加了正样本的数量。此外,我们引入了质量估计任务作为辅助监督,这使得输出的置信度评分更加合理,改进了检测结果排名的准确性,并导致更高的评估指标。

此外,我们对 Sparse4D 中的实例自注意力和时间交叉注意力模块进行了结构增强,引入了一种解耦注意力机制,旨在减少计算注意力权重过程中特征干扰。当锚点嵌入和实例特征作为注意力计算的输入时,结果注意力权重中存在异常值。这未能准确反映目标特征之间的相互关联,导致无法聚合正确的特征。通过将加法替换为拼接,我们显著减轻了这一错误现象的发生。这一改进与 Conditional DETR 有相似之处。然而,关键的不同在于我们强调查询之间的注意力,而不是 Conditional DETR 关注查询和图像特征之间的交叉注意力。此外,我们的方法涉及一种不同的编码方法。
最后,为了提升感知系统的端到端能力,我们探索了将3D多目标跟踪任务集成到Sparse4D框架中,从而直接输出目标运动轨迹。与基于检测的跟踪方法不同,我们消除了对数据关联和滤波的需求,将所有跟踪功能整合到检测器中。此外,与现有的联合检测和跟踪方法不同,我们的跟踪器不需要修改训练过程或损失函数。它无需提供真实的ID标注,却能实现预定义的实例到跟踪的回归。我们的跟踪实现最大限度地整合了检测器和跟踪器,不需要修改检测器的训练过程,也无需额外的微调。我们的贡献可以总结如下:

  1. 我们提出了Sparse4D-v3,一个强大的3D感知框架,包含三种有效的策略:时间实例去噪、质量估计和解耦注意力。
  2. 我们将Sparse4D扩展为一个端到端的跟踪模型。
  3. 我们在nuScenes上展示了我们改进的有效性,在检测和跟踪任务中实现了最先进的性能。

这篇关于地平线Sparse4D论文解析(含论文原文)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138561

相关文章

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

java解析jwt中的payload的用法

《java解析jwt中的payload的用法》:本文主要介绍java解析jwt中的payload的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解析jwt中的payload1. 使用 jjwt 库步骤 1:添加依赖步骤 2:解析 JWT2. 使用 N

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Java字符串处理全解析(String、StringBuilder与StringBuffer)

《Java字符串处理全解析(String、StringBuilder与StringBuffer)》:本文主要介绍Java字符串处理全解析(String、StringBuilder与StringBu... 目录Java字符串处理全解析:String、StringBuilder与StringBuffer一、St