地平线Sparse4D论文解析(含论文原文)

2024-09-05 09:20

本文主要是介绍地平线Sparse4D论文解析(含论文原文),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0. 摘要

在自动驾驶感知系统中,3D 检测和跟踪是两个基本任务。本文深入研究了这一领域,并在 Sparse4D 框架的基础上进行了扩展。我们引入了两个辅助训练任务(时间实例去噪和质量估计),并提出了解耦注意力机制,以进行结构性改进,从而显著提升了检测性能。此外,我们通过在推理过程中分配实例 ID 的简单方法,将检测器扩展为跟踪器,进一步突出基于查询的算法的优势。在 nuScenes 基准测试上的广泛实验验证了所提出改进的有效性。以 ResNet50 作为骨干网络,我们在 mAP、NDS 和 AMOTA 上分别提升了 3.0%、2.2% 和 7.6%,达到了 46.9%、56.1% 和 49.0%。我们的最佳模型在 nuScenes 测试集上取得了 71.9% 的 NDS 和 67.7% 的 AMOTA。
代码将发布在 github工程链接。
论文免费下载链接

1. 前言

在时序多视角感知研究领域,基于稀疏的算法取得了显著进展 ,其感知性能已达到与基于密集 BEV 的算法相当的水平,同时提供了几个优势:
1) 自由视角转换。这些稀疏方法无需将图像空间转换为 3D 向量空间。
2) 检测头的计算负载恒定,与感知距离和图像分辨率无关。
3) 更容易通过端到端的方式实现下游任务的集成。

在本文研究中,我们选择了基于稀疏的算法 Sparse4Dv2 作为我们改进的基准。该算法的整体结构如图 1 所示。图像编码器将多视角图像转换为多尺度特征图,而解码器模块则利用这些图像特征来优化实例并生成感知结果。
图1Sparse4D 框架-多视角视频作为输入并输出所有帧的感知结果
首先,我们观察到与基于密集的方法相比,基于稀疏的方法在收敛上面临更大的挑战,最终影响了它们的最终性能。这一问题在二维检测领域已得到充分研究,主要归因于一对一的正样本匹配。这种匹配方式在训练的初期阶段不稳定,并且与一对多匹配相比,正样本的数量也较少,从而降低了解码器训练的效率。此外,Sparse4D 采用了稀疏特征采样,而不是全局交叉注意力,这进一步阻碍了编码器的收敛,因为正样本稀少。在 Sparse4Dv2 中,引入了密集的深度监督,以部分缓解图像编码器面临的这些收敛问题。本文主要旨在通过关注解码器训练的稳定性来提高模型性能。我们将去噪任务作为辅助监督,并将去噪技术从二维单帧检测扩展到三维时间序列检测。这不仅确保了稳定的正样本匹配,还显著增加了正样本的数量。此外,我们引入了质量估计任务作为辅助监督,这使得输出的置信度评分更加合理,改进了检测结果排名的准确性,并导致更高的评估指标。

此外,我们对 Sparse4D 中的实例自注意力和时间交叉注意力模块进行了结构增强,引入了一种解耦注意力机制,旨在减少计算注意力权重过程中特征干扰。当锚点嵌入和实例特征作为注意力计算的输入时,结果注意力权重中存在异常值。这未能准确反映目标特征之间的相互关联,导致无法聚合正确的特征。通过将加法替换为拼接,我们显著减轻了这一错误现象的发生。这一改进与 Conditional DETR 有相似之处。然而,关键的不同在于我们强调查询之间的注意力,而不是 Conditional DETR 关注查询和图像特征之间的交叉注意力。此外,我们的方法涉及一种不同的编码方法。
最后,为了提升感知系统的端到端能力,我们探索了将3D多目标跟踪任务集成到Sparse4D框架中,从而直接输出目标运动轨迹。与基于检测的跟踪方法不同,我们消除了对数据关联和滤波的需求,将所有跟踪功能整合到检测器中。此外,与现有的联合检测和跟踪方法不同,我们的跟踪器不需要修改训练过程或损失函数。它无需提供真实的ID标注,却能实现预定义的实例到跟踪的回归。我们的跟踪实现最大限度地整合了检测器和跟踪器,不需要修改检测器的训练过程,也无需额外的微调。我们的贡献可以总结如下:

  1. 我们提出了Sparse4D-v3,一个强大的3D感知框架,包含三种有效的策略:时间实例去噪、质量估计和解耦注意力。
  2. 我们将Sparse4D扩展为一个端到端的跟踪模型。
  3. 我们在nuScenes上展示了我们改进的有效性,在检测和跟踪任务中实现了最先进的性能。

这篇关于地平线Sparse4D论文解析(含论文原文)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138561

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

99%的人都选错了! 路由器WiFi双频合一还是分开好的专业解析与适用场景探讨

《99%的人都选错了!路由器WiFi双频合一还是分开好的专业解析与适用场景探讨》关于双频路由器的“双频合一”与“分开使用”两种模式,用户往往存在诸多疑问,本文将从多个维度深入探讨这两种模式的优缺点,... 在如今“没有WiFi就等于与世隔绝”的时代,越来越多家庭、办公室都开始配置双频无线路由器。但你有没有注