一、storm基础概念

2024-09-05 08:58
文章标签 基础 概念 storm

本文主要是介绍一、storm基础概念,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、什么是storm

       Storm是一个分布式的、高容错的实时计算系统。
Storm对于实时计算的的意义相当于Hadoop对于批处理的意义。Hadoop为我们提供了Map和Reduce原语,使我们对数据进行批处理变的非常的简单和优美。同样,Storm也对数据的实时计算提供了简单Spout和Bolt原语。
Storm适用的场景:
(1)、流数据处理:Storm可以用来用来处理源源不断的消息,并将处理之后的结果保存到持久化介质中。
(2)、分布式RPC:由于Storm的处理组件都是分布式的,而且处理延迟都极低,所以可以Storm可以做为一个通用的分布式RPC框架使用。

2、入门级程序wordcount

topology:


 SentenceSpout.java

public class SentenceSpout extends BaseRichSpout {private SpoutOutputCollector collector;private String[] sentences = {"my dog has fleas","i like cold beverages","the dog ate my homework","don't have a cow man","i don't think i like fleas"};private int index = 0;public void declareOutputFields(OutputFieldsDeclarer declarer) {declarer.declare(new Fields("sentence"));}public void open(Map config, TopologyContextcontext, SpoutOutputCollector collector) {this.collector = collector;}public void nextTuple() {this.collector.emit(new Values(sentences[index]));index++;if (index >= sentences.length) {index = 0;}Utils.sleep(1);}
}

 SplitSentenceBolt.java

public class SplitSentenceBolt extends BaseRichBolt {private OutputCollector collector;public void prepare(Map config, TopologyContextcontext, OutputCollector collector) {this.collector = collector;}public void execute(Tuple tuple) {String sentence = tuple.getStringByField("sentence");String[] words = sentence.split(" ");for(String word : words){this.collector.emit(new Values(word));}}public void declareOutputFields(OutputFieldsDeclarer declarer) {declarer.declare(new Fields("word"));}
}

WordCountBolt.java

public class WordCountBolt extends BaseRichBolt {private OutputCollector collector;private HashMap<String, Long> counts = null;public void prepare(Map config, TopologyContextcontext, OutputCollector collector) {this.collector = collector;this.counts = new HashMap<String, Long>();}public void execute(Tuple tuple) {String word = tuple.getStringByField("word");Long count = this.counts.get(word);if(count == null){count = 0L;}count++;this.counts.put(word, count);this.collector.emit(new Values(word, count));}public void declareOutputFields(OutputFieldsDeclarer declarer) {declarer.declare(new Fields("word", "count"));}
}

ReportBolt.java

public class ReportBolt extends BaseRichBolt {private HashMap<String, Long> counts = null;public void prepare(Map config, TopologyContext context, OutputCollector collector) {this.counts = new HashMap<String, Long>();}public void execute(Tuple tuple) {String word = tuple.getStringByField("word");Long count = tuple.getLongByField("count");this.counts.put(word, count);}public void declareOutputFields(OutputFieldsDeclarer declarer) {// this bolt does not emit anything}
public void cleanup() {System.out.println("--- FINAL COUNTS ---");List<String> keys = new ArrayList<String>();keys.addAll(this.counts.keySet());Collections.sort(keys);for (String key : keys) {System.out.println(key + " : " + this.counts.get(key));}System.out.println("--------------");}}

WordCountTopology.java

public class WordCountTopology {private static final String SENTENCE_SPOUT_ID = "sentence-spout";private static final String SPLIT_BOLT_ID = "split-bolt";private static final String COUNT_BOLT_ID = "count-bolt";private static final String REPORT_BOLT_ID = "report-bolt";private static final String TOPOLOGY_NAME = "word-count-topology";public static void main(String[] args) throwsException {SentenceSpout spout = new SentenceSpout();SplitSentenceBolt splitBolt = newSplitSentenceBolt();WordCountBolt countBolt = new WordCountBolt();ReportBolt reportBolt = new ReportBolt();TopologyBuilder builder = new TopologyBuilder();builder.setSpout(SENTENCE_SPOUT_ID, spout);// SentenceSpout --> SplitSentenceBoltbuilder.setBolt(SPLIT_BOLT_ID, splitBolt).shuffleGrouping(SENTENCE_SPOUT_ID);// SplitSentenceBolt --> WordCountBoltbuilder.setBolt(COUNT_BOLT_ID, countBolt).fieldsGrouping(SPLIT_BOLT_ID, new Fields("word"));// WordCountBolt --> ReportBoltbuilder.setBolt(REPORT_BOLT_ID, reportBolt).globalGrouping(COUNT_BOLT_ID);Config config = new Config();LocalCluster cluster = new LocalCluster();cluster.submitTopology(TOPOLOGY_NAME, config,builder.createTopology());Utils.sleep(10000);cluster.killTopology(TOPOLOGY_NAME);cluster.shutdown();}
}

3、storm集群结构


4、Topology

一个实时计算应用程序的逻辑在storm里面被封装到topology对象里面, 我把它叫做计算拓补. Storm里面的topology相当于Hadoop里面的一个MapReduce Job, 它们的关键区别是:一个MapReduce Job最终总是会结束的, 然而一个storm的topoloy会一直运行 — 除非你显式的杀死它。 一个Topology是Spouts和Bolts组成的图状结构, 而链接Spouts和Bolts的则是Stream groupings。


5、spout

喷口(Spout)是拓扑的流的来源,是一个拓扑中产生源数据流的组件。通常情况下,Spout会从外部数据源(例如Kestrel队列或Twitter API)中读取数据,然后转换为拓扑内部的源数据。Spout可以是可靠的,也可以是不可靠的。如果Storm处理元组失败,可靠的Spout能够重新发射,而不可靠的Spout就尽快忘记发出的元组。Spout是一个主动的角色,其接口中有个nextTuple()函数Storm框架会不停地调用此函数,用户只要在其中生成源数据即可。

Spout的其他主要方法是ack()fail()Storm检测到一个元组从Spout发出时,ack()fail()会被调用,要么成功完成通过拓扑,要么未能完成ack()fail()仅被可靠的Spout调用

6、bolt

所有的消息处理逻辑被封装在bolts里面。 Bolts可以做很多事情: 过滤, 聚合, 查询数据库等等。
Bolts的主要方法是execute, 它以一个tuple作为输入,Bolts使用OutputCollector来发射tuple, Bolts必须要为它处理的每一个tuple调用OutputCollector的ack方法,以通知storm这个tuple被处理完成了。– 从而我们通知这个tuple的发射者Spouts。 一般的流程是: Bolts处理一个输入tuple,  发射0个或者多个tuple, 然后调用ack通知storm自己已经处理过这个tuple了。storm提供了一个IBasicBolt会自动调用ack

7、tuple和stream

    一个Tuple代表数据流中的一个基本的处理单元,例如一条cookie日志,它可以包含多个Field,每个Field表示一个属性。

     

Tuple本来应该是一个Key-Value的Map,由于各个组件间传递的tuple的字段名称已经事先定义好了,所以Tuple只需要按序填入各个Value,所以就是一个Value List。
一个没有边界的、源源不断的、连续的Tuple序列就组成了Stream。

8、stream groupings

Shuffle Grouping:随机分组,随机派发stream里面的tuple,保证每个bolt接收到的tuple数目相同。
Fields Grouping:按字段分组,比如按userid来分组,具有同样userid的tuple会被分到相同的Bolts,而不同的userid则会被分配到不同的Bolts。
All Grouping:广播发送,对于每一个tuple,所有的Bolts都会收到。
Global Grouping: 全局分组,这个tuple被分配到storm中的一个bolt的其中一个task。再具体一点就是分配给id值最低的那个task。
Non Grouping:不分组,这个分组的意思是说stream不关心到底谁会收到它的tuple。目前这种分组和Shuffle grouping是一样的效果,有一点不同的是storm会把这个bolt放到这个bolt的订阅者同一个线程里面去执行。
Direct Grouping:直接分组,  这是一种比较特别的分组方法,用这种分组意味着消息的发送者指定由消息接收者的哪个task处理这个消息。只有被声明为Direct Stream的消息流可以声明这种分组方法。而且这种消息tuple必须使用emitDirect方法来发射。消息处理者可以通过TopologyContext来获取处理它的消息的taskid (OutputCollector.emit方法也会返回taskid)
Local or shuffle grouping:如果目标bolt有一个或者多个task在同一个工作进程中,tuple将会被随机发生给这些tasks。否则,和普通的Shuffle Grouping行为一致。 


这篇关于一、storm基础概念的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138507

相关文章

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

一文带你迅速搞懂路由器/交换机/光猫三者概念区别

《一文带你迅速搞懂路由器/交换机/光猫三者概念区别》讨论网络设备时,常提及路由器、交换机及光猫等词汇,日常生活、工作中,这些设备至关重要,居家上网、企业内部沟通乃至互联网冲浪皆无法脱离其影响力,本文将... 当谈论网络设备时,我们常常会听到路由器、交换机和光猫这几个名词。它们是构建现代网络基础设施的关键组成

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

MySQL数据类型与表操作全指南( 从基础到高级实践)

《MySQL数据类型与表操作全指南(从基础到高级实践)》本文详解MySQL数据类型分类(数值、日期/时间、字符串)及表操作(创建、修改、维护),涵盖优化技巧如数据类型选择、备份、分区,强调规范设计与... 目录mysql数据类型详解数值类型日期时间类型字符串类型表操作全解析创建表修改表结构添加列修改列删除列

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

游戏闪退弹窗提示找不到storm.dll文件怎么办? Stormdll文件损坏修复技巧

《游戏闪退弹窗提示找不到storm.dll文件怎么办?Stormdll文件损坏修复技巧》DLL文件丢失或损坏会导致软件无法正常运行,例如我们在电脑上运行软件或游戏时会得到以下提示:storm.dll... 很多玩家在打开游戏时,突然弹出“找不到storm.dll文件”的提示框,随后游戏直接闪退,这通常是由于