MapReduce V2---Yarn的架构及其执行原理

2024-09-05 08:58

本文主要是介绍MapReduce V2---Yarn的架构及其执行原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. MRv1的局限性

   1):扩展性差

           MRv1中,Jobracker同事兼备了资源管理作业控制(job的生命周期管理(task调度,跟踪task过程状态,task处理容错两个功能。

    单个的jobtracker无论在内存还是其他资源方面总存在瓶颈,在伸缩性、资源利用率、运行除mapreduce的其他任务等方面都会有限制。

MRv2 Yarn框架把资源调度和task管理监控分离开来,由资源管理器NodeManager负责资源调度,每一个application(job)由一个AppMaster负责对task进行调度管理监控,并且可以监控AppMaster的状态,有问题可以在其他节点重启。

   2):资源利用率低

     MRv1 mapreduce框架使用slot做资源表示单位,并且map slotreduce slot分离的,这样资源不能共享,资源利用率不高,yarn使用节点的cpu、内存等资源作为资源表示单位,大大提高了资源利用率。


   


2.Yarn的组成

ResourceManager(RM)

RM是全局资源管理器,负责整个系统的资源管理和分配。

主要由两个组件组成:调度器和应用程序管理器(ASM)

调度器:根据容量,队列等限制条件,将系统中的资源分配给各个正在运行的应用程序,不负责具体应用程序的相关工作,比如监控或跟踪状态

应用程序管理器:负责管理整个系统中所有应用程序

ApplicationMaster(AM)

用户提交的每个应用程序均包含一个AM

AM的主要功能:

     (1)与RM调度器协商以获取资源(用Container表示)

     (2)将得到的任务进一步分配给内部的任务

     (3)与NM通信以自动/停止任务

     (4)监控所有任务运行状态,并在任务运行失败时重新为任务申请资源以重启任务

当前YARN自带了两个AM实现

     一个用于演示AM编写方法的实例程序distributedshell

     一个用于Mapreduce程序---MRAppMaster

其他的计算框架对应的AM正在开发中,比如spark等。

Nodemanager(NM)和Container

NM是每个节点上的资源和任务管理器

      (1)定时向RM汇报本节点上的资源使用情况和各个Container的运行状态

      (2)接收并处理来自AM的Container启动/停止等各种要求

Container是YARN中的资源抽象,它封装了某个节点上的多维度资源

     YARN会为每个任务分配一个Container,且该任务只能使用该Container中描述的资源


3.Yarn的执行流程

   

(1):由客户端提交一个应用,由RM的ASM接受应用请求

提交过来的应用程序包括哪些内容:

a:ApplicationMaster

b:启动Applicationmaster的命令

c:本身应用程序的内容

(2):提交了三部分内容给RM,然后RM找NodeManager,然后

Nodemanager就启用Applicationmaster,并分配Container

 

接下来我们就要执行这个任务了,

(3):但是执行任务需要资源,所以我们得向RM的ASM申请执行任务的资源(它会在RM这儿注册一下,说我已经启动了,注册了以后就可以通过RM的来管理,我们用户也可以通过RM的web客户端来监控任务的状态)ASM只是负责APplicationMaster的启用

(4)我们注册好了后,得申请资源,申请资源是通过第四步,向ResourceScheduler申请的

(5)申请并领取资源后,它会找Nodemanager,告诉他我应经申请到了,然后Nodemanager判断一下,

(6)知道他申请到了以后就会启动任务,当前启动之前会准备好环境,

(7)任务启动以后会跟APplicationmaster进行通信,不断的心跳进行任务的汇报。

(8)完成以后会给RM进行汇报,让RSM撤销注册。然后RSM就会回收资源。当然了,我们是分布式的,所以我们不会只跟自己的Nodemanager通信。也会跟其他的节点通信。

这篇关于MapReduce V2---Yarn的架构及其执行原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138503

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Java实现远程执行Shell指令

《Java实现远程执行Shell指令》文章介绍使用JSch在SpringBoot项目中实现远程Shell操作,涵盖环境配置、依赖引入及工具类编写,详解分号和双与号执行多指令的区别... 目录软硬件环境说明编写执行Shell指令的工具类总结jsch(Java Secure Channel)是SSH2的一个纯J

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

python 线程池顺序执行的方法实现

《python线程池顺序执行的方法实现》在Python中,线程池默认是并发执行任务的,但若需要实现任务的顺序执行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录方案一:强制单线程(伪顺序执行)方案二:按提交顺序获取结果方案三:任务间依赖控制方案四:队列顺序消

Go语言连接MySQL数据库执行基本的增删改查

《Go语言连接MySQL数据库执行基本的增删改查》在后端开发中,MySQL是最常用的关系型数据库之一,本文主要为大家详细介绍了如何使用Go连接MySQL数据库并执行基本的增删改查吧... 目录Go语言连接mysql数据库准备工作安装 MySQL 驱动代码实现运行结果注意事项Go语言执行基本的增删改查准备工作

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制