MapReduce V2---Yarn的架构及其执行原理

2024-09-05 08:58

本文主要是介绍MapReduce V2---Yarn的架构及其执行原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. MRv1的局限性

   1):扩展性差

           MRv1中,Jobracker同事兼备了资源管理作业控制(job的生命周期管理(task调度,跟踪task过程状态,task处理容错两个功能。

    单个的jobtracker无论在内存还是其他资源方面总存在瓶颈,在伸缩性、资源利用率、运行除mapreduce的其他任务等方面都会有限制。

MRv2 Yarn框架把资源调度和task管理监控分离开来,由资源管理器NodeManager负责资源调度,每一个application(job)由一个AppMaster负责对task进行调度管理监控,并且可以监控AppMaster的状态,有问题可以在其他节点重启。

   2):资源利用率低

     MRv1 mapreduce框架使用slot做资源表示单位,并且map slotreduce slot分离的,这样资源不能共享,资源利用率不高,yarn使用节点的cpu、内存等资源作为资源表示单位,大大提高了资源利用率。


   


2.Yarn的组成

ResourceManager(RM)

RM是全局资源管理器,负责整个系统的资源管理和分配。

主要由两个组件组成:调度器和应用程序管理器(ASM)

调度器:根据容量,队列等限制条件,将系统中的资源分配给各个正在运行的应用程序,不负责具体应用程序的相关工作,比如监控或跟踪状态

应用程序管理器:负责管理整个系统中所有应用程序

ApplicationMaster(AM)

用户提交的每个应用程序均包含一个AM

AM的主要功能:

     (1)与RM调度器协商以获取资源(用Container表示)

     (2)将得到的任务进一步分配给内部的任务

     (3)与NM通信以自动/停止任务

     (4)监控所有任务运行状态,并在任务运行失败时重新为任务申请资源以重启任务

当前YARN自带了两个AM实现

     一个用于演示AM编写方法的实例程序distributedshell

     一个用于Mapreduce程序---MRAppMaster

其他的计算框架对应的AM正在开发中,比如spark等。

Nodemanager(NM)和Container

NM是每个节点上的资源和任务管理器

      (1)定时向RM汇报本节点上的资源使用情况和各个Container的运行状态

      (2)接收并处理来自AM的Container启动/停止等各种要求

Container是YARN中的资源抽象,它封装了某个节点上的多维度资源

     YARN会为每个任务分配一个Container,且该任务只能使用该Container中描述的资源


3.Yarn的执行流程

   

(1):由客户端提交一个应用,由RM的ASM接受应用请求

提交过来的应用程序包括哪些内容:

a:ApplicationMaster

b:启动Applicationmaster的命令

c:本身应用程序的内容

(2):提交了三部分内容给RM,然后RM找NodeManager,然后

Nodemanager就启用Applicationmaster,并分配Container

 

接下来我们就要执行这个任务了,

(3):但是执行任务需要资源,所以我们得向RM的ASM申请执行任务的资源(它会在RM这儿注册一下,说我已经启动了,注册了以后就可以通过RM的来管理,我们用户也可以通过RM的web客户端来监控任务的状态)ASM只是负责APplicationMaster的启用

(4)我们注册好了后,得申请资源,申请资源是通过第四步,向ResourceScheduler申请的

(5)申请并领取资源后,它会找Nodemanager,告诉他我应经申请到了,然后Nodemanager判断一下,

(6)知道他申请到了以后就会启动任务,当前启动之前会准备好环境,

(7)任务启动以后会跟APplicationmaster进行通信,不断的心跳进行任务的汇报。

(8)完成以后会给RM进行汇报,让RSM撤销注册。然后RSM就会回收资源。当然了,我们是分布式的,所以我们不会只跟自己的Nodemanager通信。也会跟其他的节点通信。

这篇关于MapReduce V2---Yarn的架构及其执行原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138503

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

java中ssh2执行多条命令的四种方法

《java中ssh2执行多条命令的四种方法》本文主要介绍了java中ssh2执行多条命令的四种方法,包括分号分隔、管道分隔、EOF块、脚本调用,可确保环境配置生效,提升操作效率,具有一定的参考价值,感... 目录1 使用分号隔开2 使用管道符号隔开3 使用写EOF的方式4 使用脚本的方式大家平时有没有遇到自

Spring Boot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)

《SpringBoot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)》本文将以一个实际案例(用户管理系统)为例,详细解析SpringBoot中Co... 目录引言:为什么学习Spring Boot分层架构?第一部分:Spring Boot的整体架构1.1