leetcode 1645 Hopper公司查询2(postgresql)

2024-09-05 08:20

本文主要是介绍leetcode 1645 Hopper公司查询2(postgresql),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

需求

表: Drivers

±------------±--------+
| Column Name | Type |
±------------±--------+
| driver_id | int |
| join_date | date |
±------------±--------+
driver_id是该表的主键。
该表的每一行均包含驾驶员的ID以及他们加入Hopper公司的日期。

表: Rides

±-------------±--------+
| Column Name | Type |
±-------------±--------+
| ride_id | int |
| user_id | int |
| requested_at | date |
±-------------±--------+
ride_id是该表的主键。
该表的每一行均包含行程ID(ride_id),用户ID(user_id)以及该行程的日期(requested_at)。
该表中可能有一些不被接受的乘车请求。

表: AcceptedRides

±--------------±--------+
| Column Name | Type |
±--------------±--------+
| ride_id | int |
| driver_id | int |
| ride_distance | int |
| ride_duration | int |
±--------------±--------+
ride_id是该表的主键。
该表的每一行都包含已接受的行程信息。
表中的行程信息都在“Rides”表中存在。

编写SQL查询以报告2020年每个月的工作驱动因素百分比(working_percentage),其中:

注意:如果一个月内可用驾驶员的数量为零,我们认为working_percentage为0。

返回按month升序排列的结果表,其中month是月份的编号(一月是1,二月是2,等等)。将working_percentage四舍五入至小数点后两位。

查询结果格式如下例所示。

案例 1:

表 Drivers:
±----------±-----------+
| driver_id | join_date |
±----------±-----------+
| 10 | 2019-12-10 |
| 8 | 2020-1-13 |
| 5 | 2020-2-16 |
| 7 | 2020-3-8 |
| 4 | 2020-5-17 |
| 1 | 2020-10-24 |
| 6 | 2021-1-5 |
±----------±-----------+

表 Rides:
±--------±--------±-------------+
| ride_id | user_id | requested_at |
±--------±--------±-------------+
| 6 | 75 | 2019-12-9 |
| 1 | 54 | 2020-2-9 |
| 10 | 63 | 2020-3-4 |
| 19 | 39 | 2020-4-6 |
| 3 | 41 | 2020-6-3 |
| 13 | 52 | 2020-6-22 |
| 7 | 69 | 2020-7-16 |
| 17 | 70 | 2020-8-25 |
| 20 | 81 | 2020-11-2 |
| 5 | 57 | 2020-11-9 |
| 2 | 42 | 2020-12-9 |
| 11 | 68 | 2021-1-11 |
| 15 | 32 | 2021-1-17 |
| 12 | 11 | 2021-1-19 |
| 14 | 18 | 2021-1-27 |
±--------±--------±-------------+

表 AcceptedRides:
±--------±----------±--------------±--------------+
| ride_id | driver_id | ride_distance | ride_duration |
±--------±----------±--------------±--------------+
| 10 | 10 | 63 | 38 |
| 13 | 10 | 73 | 96 |
| 7 | 8 | 100 | 28 |
| 17 | 7 | 119 | 68 |
| 20 | 1 | 121 | 92 |
| 5 | 7 | 42 | 101 |
| 2 | 4 | 6 | 38 |
| 11 | 8 | 37 | 43 |
| 15 | 8 | 108 | 82 |
| 12 | 8 | 38 | 34 |
| 14 | 1 | 90 | 74 |
±--------±----------±--------------±--------------+

结果表:
±------±-------------------+
| month | working_percentage |
±------±-------------------+
| 1 | 0.00 |
| 2 | 0.00 |
| 3 | 25.00 |
| 4 | 0.00 |
| 5 | 0.00 |
| 6 | 20.00 |
| 7 | 20.00 |
| 8 | 20.00 |
| 9 | 0.00 |
| 10 | 0.00 |
| 11 | 33.33 |
| 12 | 16.67 |
±------±-------------------+

截至1月底 --> 2个活跃的驾驶员 (10, 8),无被接受的行程。百分比是0%。
截至2月底 --> 3个活跃的驾驶员 (10, 8, 5),无被接受的行程。百分比是0%。
截至3月底 --> 4个活跃的驾驶员 (10, 8, 5, 7),1个被接受的行程 (10)。百分比是 (1 / 4) * 100 = 25%。
截至4月底 --> 4个活跃的驾驶员 (10, 8, 5, 7),无被接受的行程。百分比是 0%。
截至5月底 --> 5个活跃的驾驶员 (10, 8, 5, 7, 4),无被接受的行程。百分比是 0%。
截至6月底 --> 5个活跃的驾驶员 (10, 8, 5, 7, 4),1个被接受的行程 (10)。 百分比是 (1 / 5) * 100 = 20%。
截至7月底 --> 5个活跃的驾驶员 (10, 8, 5, 7, 4),1个被接受的行程 (8)。百分比是 (1 / 5) * 100 = 20%。
截至8月底 --> 5个活跃的驾驶员 (10, 8, 5, 7, 4),1个被接受的行程 (7)。百分比是 (1 / 5) * 100 = 20%。
截至9月底 --> 5个活跃的驾驶员 (10, 8, 5, 7, 4),无被接受的行程。百分比是 0%。
截至10月底 --> 6个活跃的驾驶员 (10, 8, 5, 7, 4, 1) 无被接受的行程。百分比是 0%。
截至11月底 --> 6个活跃的驾驶员 (10, 8, 5, 7, 4, 1),2个被接受的行程 (1, 7)。百分比是 (2 / 6) * 100 = 33.33%。
截至12月底 --> 6个活跃的驾驶员 (10, 8, 5, 7, 4, 1),1个被接受的行程 (4)。百分比是 (1 / 6) * 100 = 16.67%。

输入

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

输出

with t1 as (SELECT to_char(generate_series(timestamp '2020-01-01', timestamp '2020-12-01', interval '1 month'),'YYYY-MM') AS month),t2 as (select *,to_char(join_date, 'YYYY-MM')                                   as date1,sum(1) over (rows between unbounded preceding and current row ) as rn1from Drivers),t3 as (select month, max(rn1) over (rows between unbounded preceding and current row ) as active_drivers, driver_idfrom t1left join t2on t1.month = t2.date1),t4 as (select to_char(requested_at, 'YYYY-MM') as date2, a.ride_idfrom rides rleft join acceptedrides a on r.ride_id = a.ride_id),t5 as (select month,count(ride_id) as cnt
from t1 left join t4
on t1.month=t4.date2
group by month
)
select substring(t3.month,6,7) as month,round(((cnt::float/active_drivers)*100)::numeric,2)::text as working_percentage
from t3 left join t5
on t3.month=t5.month
order by t3.month;

在这里插入图片描述

这篇关于leetcode 1645 Hopper公司查询2(postgresql)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138431

相关文章

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

MYSQL查询结果实现发送给客户端

《MYSQL查询结果实现发送给客户端》:本文主要介绍MYSQL查询结果实现发送给客户端方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql取数据和发数据的流程(边读边发)Sending to clientSending DataLRU(Least Rec

MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)

《MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)》掌握多表联查(INNERJOIN,LEFTJOIN,RIGHTJOIN,FULLJOIN)和子查询(标量、列、行、表子查询、相关/非相关、... 目录第一部分:多表联查 (JOIN Operations)1. 连接的类型 (JOIN Types)

python编写朋克风格的天气查询程序

《python编写朋克风格的天气查询程序》这篇文章主要为大家详细介绍了一个基于Python的桌面应用程序,使用了tkinter库来创建图形用户界面并通过requests库调用Open-MeteoAPI... 目录工具介绍工具使用说明python脚本内容如何运行脚本工具介绍这个天气查询工具是一个基于 Pyt

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

在Java中基于Geotools对PostGIS数据库的空间查询实践教程

《在Java中基于Geotools对PostGIS数据库的空间查询实践教程》本文将深入探讨这一实践,从连接配置到复杂空间查询操作,包括点查询、区域范围查询以及空间关系判断等,全方位展示如何在Java环... 目录前言一、相关技术背景介绍1、评价对象AOI2、数据处理流程二、对AOI空间范围查询实践1、空间查

MySQL基本查询示例总结

《MySQL基本查询示例总结》:本文主要介绍MySQL基本查询示例总结,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Create插入替换Retrieve(读取)select(确定列)where条件(确定行)null查询order by语句li

一文详解PostgreSQL复制参数

《一文详解PostgreSQL复制参数》PostgreSQL作为一款功能强大的开源关系型数据库,其复制功能对于构建高可用性系统至关重要,本文给大家详细介绍了PostgreSQL的复制参数,需要的朋友可... 目录一、复制参数基础概念二、核心复制参数深度解析1. max_wal_seChina编程nders:WAL