leetcode解题思路分析(六)37-42题

2024-09-05 05:18
文章标签 leetcode 分析 42 37 解题 思路

本文主要是介绍leetcode解题思路分析(六)37-42题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  1. 解数独
    编写一个程序,通过已填充的空格来解决数独问题。

本题主要是采取回溯法解决,选择最少空位的行、列、块,然后进行填入,如果出现问题则回溯

class Solution {
public:// line, column, block 分别存储每行、每列、每宫中可用的数字vector<set<int>> line, column, block;//哈希更新每行/列/宫中可以使用的数字void update( vector<vector<char>>& board){set<int> compare = {1,2,3,4,5,6,7,8,9};//a 行;b 列;c 宫for( int i = 0; i < 9; i++)line.push_back( compare), column.push_back( compare), block.push_back( compare); for( int i = 0; i < 9; i++)for( int j = 0; j < 9; j++)if( board[i][j] != '.'){int t = board[i][j] - '0';line[i].erase( t),  column[j].erase(t), block[i / 3 + j / 3 * 3].erase(t); }return ;}//检查该位置处字符是否可以放到该处bool check( vector<vector<char>>& board, const int& i, const int& j, int num){if( line[i].find( num) != line[i].end()&& column[j].find( num) != column[j].end()&& block[i/3 + j/3*3].find( num) != block[i/3 + j/3*3].end())return true;return false;}//标记int flag = 0;//dfs + 回溯void dfs( vector<vector<char>>& board, int count){if( count == 81){flag = 1;return ;}int i = count / 9, j = count % 9;if( board[i][j] == '.'){//检查 1 ~ 9 中数字哪一个可以放入该位置for( int k = 1; k < 10; k++)if( check( board, i, j, k)){line[i].erase( k), column[j].erase( k), block[ i /3 + j/3*3].erase( k);board[i][j] = k + '0';dfs( board, count + 1);if( !flag){line[i].insert( k), column[j].insert( k), block[ i /3 + j/3*3].insert( k);board[i][j] = '.';}elsereturn ;}}elsedfs( board, count + 1);return ;}void solveSudoku(vector<vector<char>>& board) {update( board);//show( line, column, block);dfs(board, 0);}
};
  1. 外观数列
    「外观数列」是一个整数序列,从数字 1 开始,序列中的每一项都是对前一项的描述。

本题采用递归可解:每次的答案均是上次的cnt + val

class Solution {
public:string countAndSay(int n) {if (n == 1)return "1";string s = countAndSay(n - 1);string ret;int size = s.size();for (int i = 0; i < size;){int cnt = 1;char val = s[i];i++;while (i < size && s[i] == val){i++;cnt++;}char count = cnt + '0';ret = ret + count + val;                           }return ret;}
};
  1. 组合总和
    给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
    candidates 中的数字可以无限制重复被选取。

本题可采用动态规划的方法解决:对target可以分解为数组中的某些元素,从第一个元素开始遍历,即dp[target] = dp[candidates[0]] + dp[target - candidates[0]],由此可解

class Solution {
public:vector<vector<int>> combinationSum(vector<int>& candidates, int target) {unordered_map<int, set<vector<int>>>dict;for (int i = 1; i <= target; i++){for (int it : candidates) {		if (i == it) dict[i].insert(vector<int>{it});else if (i > it){for (auto ivec : dict[i - it]) {ivec.push_back(it);sort(ivec.begin(), ivec.end());if(dict[i].count(ivec)==0)dict[i].insert(ivec);}}}}vector<vector<int>>ans;for (auto it : dict[target]) ans.push_back(it);return ans;}
};

增加剪枝操作之后的代码如下


class Solution {
private:vector<int> candidates;vector<vector<int>> res;vector<int> path;
public:void DFS(int start, int target) {if (target == 0) {res.push_back(path);return;}for (int i = start;i < candidates.size() && target - candidates[i] >= 0; i++) {path.push_back(candidates[i]);DFS(i, target - candidates[i]);path.pop_back();}}vector<vector<int>> combinationSum(vector<int> &candidates, int target) {std::sort(candidates.begin(), candidates.end());this->candidates = candidates;DFS(0, target);return res;}};
  1. 组合总和2
    给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
    candidates 中的每个数字在每个组合中只能使用一次。

此题本质上和上题是一样的东西,只不过是稍微修改一点条件而已。一样的回溯+剪纸可解

class Solution {
public:vector<int> input;int target;vector<vector<int>> result;vector<int> vc;void dfs(int index, int sum) {// index >= input.size() ,写成 index == input.size() 即可// 因为每次都 + 1,在 index == input.size() 剪枝就可以了if (sum >= target || index == input.size()) {if (sum == target) {result.push_back(vc);}return;}for (int i = index; i < input.size(); i++) {if (input[i] > target) {continue;}// 【我添加的代码在这里】:// 1、i > index 表明剪枝的分支一定不是当前层的第 1 个分支// 2、input[i - 1] == input[i] 表明当前选出来的数等于当前层前一个分支选出来的数// 因为前一个分支的候选集合一定大于后一个分支的候选集合// 故后面出现的分支中一定包含了前面分支出现的结果,因此剪枝// “剪枝”的前提是排序,升序或者降序均可if (i > index && input[i - 1] == input[i]) {continue;}vc.push_back(input[i]);sum += input[i];dfs(i + 1, sum);vc.pop_back();sum -= input[i];}}vector<vector<int>> combinationSum2(vector<int> &candidates, int target) {// “剪枝”的前提是排序,升序或者降序均可sort(candidates.begin(), candidates.end());this->input = candidates;this->target = target;dfs(0, 0);return result;}};
  1. 缺失的第一个正数
    给定一个未排序的整数数组,找出其中没有出现的最小的正整数。

本题有一个隐藏的结论:数组长度为N,则最小正整数一定小于等于N+1,介于此,我们可以用数组当哈希表用来存储状态,然后据此遍历一遍即可

class Solution {
public:int firstMissingPositive(vector<int>& nums) {int ret = 1;        int size = nums.size();int mapNums[size + 2] = {0};for (int i = 0; i < nums.size(); i++){int tmp = nums[i];if (tmp < size + 2 && tmp > 0)mapNums[tmp] = 1;}while (1){if (mapNums[ret] == 1)ret++;elsereturn ret;}}
};
  1. 接雨水
    给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。

遇到这种一般最优解都是双指针首尾滑动,主要难点在于设计怎么计算。这题的核心思想在于:左边比右边高则从右边开始算格子,右边比左边高则从左边开始算格子

class Solution {
public:int trap(vector<int>& height) {int begin = 0, end = height.size() - 1, ret = 0;int leftMax = 0, rightMax = 0;while (begin < end){if (height[begin] < height[end]){if (height[begin] < leftMax)ret += leftMax - height[begin];elseleftMax = height[begin];begin++;}else{if (height[end] < rightMax)ret += rightMax - height[end];elserightMax = height[end];end--;}}return ret;}
};

这篇关于leetcode解题思路分析(六)37-42题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138052

相关文章

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1