PyTorch Demo-3 : 动态调整学习率

2024-09-05 01:38

本文主要是介绍PyTorch Demo-3 : 动态调整学习率,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

# 一些必要的库和参数
import torch
import torch.nn as nn
from torchvision import models
import matplotlib.pyplot as plt
import numpy as np
以SGD为例
model = models.resnet18()init_lr = 0.1
optimizer = torch.optim.SGD(model.parameters(), init_lr)
# 查看学习率
for param_group in optimizer.param_groups:print(param_group['lr'])
# 0.1
1. 官方例子里是如下的自定义函数方式,以最常用的调整策略StepLR为例,每隔一定轮数进行改变
# Reference:https://github.com/pytorch/examples/blob/master/imagenet/main.py
# 每30轮学习率乘以0.1
def adjust_learning_rate(optimizer, epoch, init_lr):"""optimizer: 优化器epoch: 训练轮数,也可以根据需要加入其它参数init_lr:初始学习率,也可以设置为全局变量"""lr = init_lr * (0.1 ** (epoch // 30))for param_group in optimizer.param_groups:param_group['lr'] = lr
total_epoch = 100
lrs = []
# 每一轮调用函数即可
for epoch in range(total_epoch):adjust_learning_rate(optimizer, epoch, init_lr)lrs.append(optimizer.param_groups[0]['lr'])plt.plot(range(total_epoch), lrs)
plt.title('adjustLR')
plt.savefig('adjustLR.jpg', bbox_inches='tight')

adjustLR

这种方法可以很方便根据自己的逻辑获得想要的学习率变化策略,可以很复杂,也可以很简单。

2. lr_scheduler

PyTorch中提供了多种预设的学习率策略,都包含在torch.optim.lr_scheduler ,详细见 Docs 。

同理,以 StepLR 为例

scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)
total_epoch = 100
lrs = []
for epoch in range(total_epoch):lrs.append(optimizer.param_groups[0]['lr'])# 调用step()即更新学习率scheduler.step()
plt.plot(range(total_epoch), lrs)
plt.title('StepLR')

在这里插入图片描述
可以看到,两种方式的StepLR效果是一样的。

3. 带warmup的学习率调整
3.1 自定义函数
def adjust_learning_rate(optimizer, warm_up_step, epoch, init_lr):if epoch < warm_up_step:lr = (epoch + 1) / warm_up_step * init_lrelse:lr = init_lr * (0.1 ** (epoch // 30))for param_group in optimizer.param_groups:param_group['lr'] = lr

在这里插入图片描述

3.2 LambdaLR

lr_scheduler中也有一项自定义的学习率调整方法,通过构造匿名函数来实现

lambda_ = lambda epoch: (epoch + 1) / warm_up_step if epoch < warm_up_step else 0.1 ** (epoch // 30)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lambda_)

在这里插入图片描述

需要注意的是,自定义函数的方式是直接对优化器中的学习率赋值,而LambdaLR是学习率的权重!
3.3 余弦变换

余弦变换也是常用的学习率调整策略之一,跟steplr可以达到差不多的效果,但是从训练图像上看会更平稳一些。

lambda_ = lambda epoch: (epoch + 1) / warm_up_step if epoch < warm_up_step else 0.5 * (np.cos((epoch - warm_up_step) / (total_epoch - warm_up_step) * np.pi) + 1)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lambda_)

在这里插入图片描述

4. Other

其他策略如:余弦退火,指数变换,正弦变换,学习率重启等。

这篇关于PyTorch Demo-3 : 动态调整学习率的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137608

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可