【C】快速傅里叶变换(FFT)讲解及实现

2024-09-05 00:38

本文主要是介绍【C】快速傅里叶变换(FFT)讲解及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 引言
  • 基2FFT

1.引言

人类的求知欲是永无止境的,自1965年 T. W. Cooley 和 J. W. Tuky 在《Math. Computation, Vol, 19, 1965》发表了著名的《 An algorithm for the machine calculation of complex Fourier series 》,人们对 有关傅里叶变换的改进和创新就从未止步。1984年,P. Dohamel 和 H. Hollmann 提出的分裂基快速算法,使得算法的运算速率上升到了新台阶。
直至今日,已提出的快速算法有多种,还有很多学者在不断研究探索新的快速算法。
本文仅介绍最经典的基2FFT算法原理及编程思想。

2.基2FFT

基2FFT算法分为两类:时域抽取法FFT(Decimation-In-Time FFT, 简称 DIT - FFT);
     频域抽取法FFT(Decimation-In-Frequnency FFT, 简称 DIF - FFT);

2.1 FFT 基本思想

对于信号的N点离散傅里叶变化(Discrete Fourier Transform, DFT),DFT的复乘次数为N*N, 复加次数为N*(N-1),当N = 1024时,N*N = 1048576,显然实时信号处理对时间的苛刻要求对应于当代硬件是一个矛盾。FFT算法就是不断二分DFT, 利用旋转因子W^m_N的周期性和对称性减少运算量。

周期性表现为:W^(m+iN)_N = e^( -j2*pi/N*(m+iN) ) = e^(-j2*pi/N*m - j2*pi*i) = e^(-j2*pi/N*m) = W^m_N
对称性表现为:W^(-m)_N = W^(N-m)_N  or  W^(m+N/2)_N = -W^m_N

2.2 时域抽取法 基FFT 基本原理

  • 序列x(n)长度为16,满足N=2^M
  • 将序列按照n的奇偶性二分:x(2r)  and x(2r+1)  
  • 再二分,分到不可二分结束。
  • X(k)         = X1(k) + W^k_N*X2(k)
  • X(k+N/2) = X1(k) + W^k_N*X2(k)
  • 即   X(0) + X(0+16/2)   =   X(0)+X(8)      =   X1(0)
  •       X1(0)+X1(0+8/2)   =   X1(0)+X(4)     =   X2(0)
  •       X2(0)+X2(0+4/2)   =   X2(0)+X2(2)   =   X3(0)
  •       X3(0)+X3(0+2/2)   =   X3(0)+X3(1)   =   X4(0)
16点 时域抽取法FFT(简称 DIT - FFT)


计算量:
  • 完成一次蝶形运算 =  1次复数乘法 + 两次复数加法;
  • 计算1个N点DFT    =  2个N/2点DFT +   N/2个蝶形运算。
  • 计算一个N/2点DFT  = (N/2)^2次复数乘法   +  (N/2)(N/2 - 1)次复数加法
  • 可见,一次分解,运算量将近一半
这里附一段大神的解释【更正了其中的一些小错误】:
  • 第一级,每个蝶形的两节点“距离”为1,第二级每个蝶形的两节点“距离”为2,第三级为4,第四级为8【参考上图去理解】
  • 由此推得,第m级蝶形运算,每个蝶形的两节点“距离”  为 Length = 2^(m-1)

  • 对于16级DIT_FFT,第一级有8组蝶形,每组一个蝶形;第二级有4个蝶形,每组两个蝶形;第三级有2个蝶形,每组四个蝶形;第四级有1个蝶形,每组有8个蝶形。

  • 旋转因子W^k_N的确定
  • 以16点FFT为列,第m级第k个旋转因子为, k = 0, 1, ... ,2^m-1, 即m级共有2^m-1个旋转因子。
  • 根据旋转因子的可约性,,所以第m级第k个旋转因子为
并且,这位大神提出,为提高FFT的运算速度,我们可以建立一个旋转因子数组,然后通过查表法实现。【实际上并不实用,仅适用于确定点数且不 再修改的条件下】
//complex WN[N_series] = //旋转因子数组
{//为节省CPU计算时间,旋转因子采用查表法处理// ★ 根据实际FFT的点数N_series,该表数据需自行修改// 以下结果通过Excel自动生成// WN[k].real =  cos(2*PI/N*k);// WN[k].img  = -sin(2*PI/N*k);}



16点 频域抽取法FFT(简称 DIF - FFT)

3.实现



这篇关于【C】快速傅里叶变换(FFT)讲解及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137487

相关文章

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

SpringBoot+EasyPOI轻松实现Excel和Word导出PDF

《SpringBoot+EasyPOI轻松实现Excel和Word导出PDF》在企业级开发中,将Excel和Word文档导出为PDF是常见需求,本文将结合​​EasyPOI和​​Aspose系列工具实... 目录一、环境准备与依赖配置1.1 方案选型1.2 依赖配置(商业库方案)二、Excel 导出 PDF

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

使用zip4j实现Java中的ZIP文件加密压缩的操作方法

《使用zip4j实现Java中的ZIP文件加密压缩的操作方法》本文介绍如何通过Maven集成zip4j1.3.2库创建带密码保护的ZIP文件,涵盖依赖配置、代码示例及加密原理,确保数据安全性,感兴趣的... 目录1. zip4j库介绍和版本1.1 zip4j库概述1.2 zip4j的版本演变1.3 zip4

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录